Квантовое ионизирующее излучение. Источники фотонного излучения в) Двойной положительный

К фотонным ИИ относятся -излучение радиоактивных веществ, характеристическое и тормозное излучения, генерируемые различными ускорителями. ЛПИ фотонного излучения самая низкая (1-2 пары ионов на 1 см 3 воздуха), что определяет его высокую проникающую способность (в воздухе длина пробега составляет несколько сот метров).

-излучение возникает при радиоактивном распаде. Переход ядра из возбужденного в основное состояние сопровождается излучением -кванта с энергиями от 10 кэВ до 5 МэВ. Основными терапевтическими источниками -излучения являются -аппараты (пушки).

Тормозное рентгеновское излучение возникает за счет ускорения и резкого торможения электронов в вакуумных системах различных ускорителей и отличается от рентгеновского большей энергией квантов (от одного до десятков МэВ).

При прохождении потока фотонов через вещество происходит его ослабление в результате следующих процессов взаимодействия (тип взаимодействия фотонов с атомами вещества зависит от энергии фотонов):

    Классическое (когерентное, или томпсоновское, рассеяние) - для фотонов с энергией от 10 до 50-100 кэВ. Относительная частота этого эффекта мала. Происходит взаимодействие, которое существенной роли не играет, так как падающий квант, столкнувшись с электроном, отклоняется, и его энергия не меняется.

    Фотоэлектрическое поглощение (фотоэффект) - при относительно малых энергиях - от 50 до 300 кэВ (играет существенную роль при рентгенотерапии). Падающий квант выбивает орбитальный электрон из атома, сам при этом поглощается, а электрон, немного изменив направление, улетает. Этот улетевший электрон называется фотоэлектроном. Таким образом, энергия фотона тратится на работу выхода электрона и на придание ему кинетической энергии.

    Эффект Комптона (некогерентное рассеяние) - возникает при энергии фотона от 120 кэВ до 20 МэВ (т. е. практически весь спектр лучевой терапии). Падающий квант выбивает электрон с наружной оболочки атома, передавая ему часть энергии, и меняет свое направление. Электрон вылетает из атома под определенным углом, а новый квант отличается от первоначального не только иным направлением движения, но и меньшей энергией. Образовавшийся квант будет косвенно ионизировать среду, а электрон - прямо.

    Процесс образования электронно-позитронных пар - энергия кванта должна быть больше 1,02 МэВ (удвоенной энергии покоя электрона). С этим механизмом приходится считаться при облучении больного пучком тормозного излучения высокой энергии, т. е. на высокоэнергетических линейных ускорителях. Вблизи ядра атома падающий квант испытывает ускорение и исчезает, преобразовываясь в электрон и позитрон. Позитрон быстро объединяется со встречным электроном, и происходит процесс аннигиляции (взаимного уничтожения), а взамен возникают два фотона, энергия каждого из которых вдвое меньше энергии исходного фотона. Таким образом, энергия первичного кванта переходит в кинетическую энергию электрона и в энергию аннигиляционного излучения.

    Фото ядерное поглощение - энергия квантов должна быть больше 2,5 МэВ. Фотон поглощается ядром атома, в результате чего ядро переходит в возбужденное состояние и может либо отдать электрон, либо развалиться. Таким образом получаются нейтроны.

В результате вышеперечисленных процессов взаимодействия фотонного излучения с веществом возникает вторичное фотонное и корпускулярное излучение (электроны и позитроны). Ионизационная способность частиц значительно больше, чем фотонного излучения.

Пространственное ослабление пучка фотонов происходит по экспоненциальному закону (закону обратных квадратов): интенсивность излучения обратно пропорциональна квадрату расстояния до источника излучения.

Излучение в диапазоне с энергией от 200 кэВ до 15 МэВ нашло самое широкое применение в терапии злокачественных новообразований. Большая проникающая способность позволяет передавать энергию глубоко расположенным опухолям. При этом резко снижается лучевая нагрузка на кожу и подкожную клетчатку, что позволяет подвести требуемую дозу к очагу поражения без лучевого повреждения указанных участков тела (в отличие от мягкого рентгеновского излучения). С увеличением энергии фотонов больше 15 МэВ увеличивается риск лучевого поражения тканей на выходе из пучка.

Все ионизирующие излучения делятся на фотонные и корпускулярные.

К фотонному ионизирующему излучению относятся:

  • а) Y-излучение, испускаемое при распаде радиоактивных изотопов или аннигиляции частиц. Гамма-излучение по своей природе является коротковолновым электромагнитным излучением, т.е. потоком высокоэнергетических квантов электромагнитной энергии, длина волны которых значительно меньше межатомных расстояний, т.е. y
  • б) рентгеновское излучение, возникающее при уменьшении кинетической энергии заряженных частиц и / или при изменении энергетического состояния электронов атома.

Корпускулярное ионизирующее излучение состоит из потока заряженных частиц (альфа-,бета-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят:

а) нейтроны - единственные незаряженные частицы, образующиеся при некоторых реакциях деления ядер атомов урана или плутония. Поскольку эти частицы электронейтральны, они глубоко проникают во всякое вещество, включая живые ткани. Отличительной особенностью нейтронного излучения является его способность превращать атомы стабильных элементов в их радиоактивные изотопы, т.е. создавать наведённую радиацию, что резко повышает опасность нейтронного излучения. Проникающая способность нейтронов сравнима с Y- излучением. В зависимости от уровня носимой энергии условно различают нейтроны быстрые (обладающие энергией от 0,2 до 20 Мэ В) и тепловые (от 0,25 до 0,5 Мэ В). Это различие учитывается при проведении защитных мероприятий. Быстрые нейтроны замедляются, теряя энергию ионизации, веществами с малым атомным весом (так называемыми водородосодержащими: парафин, вода, пластмассы и др.). Тепловые нейтроны поглощаются материалами, содержащими бор и кадмий (борная сталь, бораль, борный графит, сплав кадмия со свинцом).

Альфа-, бета-частицы и гамма-кванты обладают энергией всего в несколько мегаэлектронвольт, и создавать наведённую радиацию не могут;

  • б) бета частицы - электроны, испускаемые во время радиоактивного распада ядерных элементов с промежуточной ионизирующей и проникающей способностью (пробег в воздухе до 10-20 м).
  • в) альфа частицы - положительно заряженные ядра атомов гелия, а в космическом пространстве и атомов других элементов, испускаемые при радиоактивном распаде изотопов тяжёлых элементов - урана или радия. Они обладают малой проникающей способностью (пробег в воздухе - не более 10 см), даже человеческая кожа является для них непреодолимым препятствием. Опасны они лишь при попадании внутрь организма, так как способны выбивать электроны из оболочки нейтрального атома любого вещества, в том числе и тела человека, и превращать его в положительно заряженный ион со всеми вытекающими последствиями, о которых будет сказано далее. Так, альфа частица с энергией 5 МэВ образует 150 000 пар ионов.

Рис. 1

Количественное содержание радиоактивного материала в организме человека или веществе определяется термином «активность радиоактивного источника» (радиоактивность). За единицу радиоактивности в системе СИ принят беккерель (Бк), соответствующий одному распаду в 1 с. Иногда на практике применяется старая единица активности - кюри (Ки). Это активность такого количества вещества, в котором за 1с происходит распад 37 млрд. атомов. Для перевода пользуются зависимостью: 1 Бк = 2,7 х 10 Ки или 1 Ки = 3,7 х 10 Бк.

Каждый радионуклид имеет неизменный, присущий только ему период полураспада (время, необходимое для потери веществом половины активности). Например, у урана-235 он составляет 4 470 лет, тогда как у йода-131 - всего лишь 8 суток.

Первые исследования ионизирующего излучения были проведены в конце XIX в. В 1895 г. немецкий физик В.К. Рентген открыл «Х-лучи», названные впоследствии рентгеновским излучением. В 1896 г. французский физик А. Беккерель обнаружил следы естественной радиоактивности солей урана на фотографических пластинках. В 1898 г. супруги Мария и Пьер Кюри установили, что уран после излучения превращается в другие химические элементы. Один из этих элементов они назвали «радий» (Ra) (от лат. «испускающий лучи»).

Ионизирующее излучение – это излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков. Ионизирующие излучения подразделяются на корпускулярное и фотонное.

К корпускулярному излучению относятся: a, b-, протонные и нейтронные излучения.

a-излучение – это поток ядер гелия, образующихся при радиоактивном распаде. Они имеют массу 4 и заряд +2. К a-излучателем относятся около 160 природных и техногенных радионуклидов, большинство которых находятся в конце периодической системы элементов (заряд ядра > 82). a-частицы распространяются в средах прямолинейно, имеют незначительный пробег (расстояние, на котором частицы теряют свою энергию, взаимодействуя с веществом): в воздухе – менее 10 см; в биологических тканях 30-150 мкм. a - частицы обладают высокой ионизирующей и низкой проникающей способностью.

b-излучение – это поток электронов и позитронов. Их масса в десятки тысяч раз меньше массы a-частиц. К b-излучателям относятсяоколо 690 природных и техногенных излучателей. Пробег b-частиц составляет в воздухе несколько метров, а в биологических тканях - около 1 см. Они обладают более высокой, чем a - частицы, проникающей способностью, но меньшей ионизирующей.

Протонное излучение – поток ядер водорода.

Нейтронное излучение – поток ядерных частиц, не имеющих заряда с массой, близкой к массе протона. Свободные нейтроны захватываются ядрами. При этом ядра переходят в возбужденное состояние и делятся с выделением g-квантов, нейтронов и запаздывающих нейтронов. Благодаря запаздывающим нейтронам реакция деления в ядерных реакторах является управляемой. Нейтронное излучение обладает более высокой ионизирующей способностью, по сравнению с другими видами корпускулярного излучения.

Фотон – это квант энергии электромагнитного излучения высокой частоты. Фотонное излучение делится на рентгеновское и g-излучение. Они обладают высокой проникающей и малой ионизирующей способностью.

Рентгеновское излучение – это искусственное электромагнитное излучение, возникающее в рентгеновских трубках («Х – лучи»).

g-излучение это электромагнитное излучениеестественного происхождения. g-лучи распространяются прямолинейно, не отклоняются в электрических и магнитных полях, имеют большой пробег в воздухе.


Непосредственно ионизирующее излучение – это излучение состоящее из заряженных частиц, например, a, b-частиц. Косвенно ионизирующее излучение – это излучение, состоящее из незаряженных частиц, например, нейтронов или фотонов. Они создают вторичное излучение в средах, через которые проходят.

Ионизирующее излучение описывается следующими физическими величинами

Активность вещества A определяется скоростью радиоактивного распада:

где: dN – число спонтанных ядерных превращений за время dt.

Единицы активности:

в системе СИ - Беккерель: 1 Бк = 1 расп/с

внесистемная единица – Кюри: 1 Ки = 3.7 . 10 10 расп/с, что соответствует активности 1 г. чистого Ra.

Период полураспада Т 1/2 – время, необходимое для уменьшения активности радионуклидов в 2 раза. Для U-238 Т 1/2 = 4,56 . 10 9 лет, для Rа-226 Т 1/2 = 1622 года.

Экспозиционная доза X – энергия ионизирующего излучения, вызывающая образование в воздухе заряда dQ одного знака в элементарном объеме, массой dm.

Единицы экспозиционной дозы:

в системе СИ 1 Кл/кг = 3880 Р.

внесистемная единица – Рентген: 1 Р

Поглощенная доза D определяется количеством поглощенной энергии dE на единицу массы облучаемого вещества dm.

Единицы поглощенной дозы:

в системе СИ Грей: 1 Гр

внесистемная единица 1 рад = 0,01 Гр

1 Р = 0.87 рад

1 рад = 1.14 Р

Название «рад» - от первых букв термина «radiation absorbed dose».

Эквивалентная доза H R показывает опасность различных видов радиационного облучения биологических тканей и равна:

где: W R – весовой коэффициент, отражающий опасность того или иного вида ионизирующего излучения для организма.

рентгеновское, g-излучение, b-излучение W R = 1;

нейтроны W R = 5-20;

a-частицы W R = 20.

Единицы эквивалентной дозы:

в системе СИ 1 Зв в честь шведского ученого Зиверта

внесистемная единица – 1 бэр = 0.01 Зв

бэр – биологический эквивалент рада.

Эффективная эквивалентная доза H E – это величина риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Разные органы и ткани имеют разную чувствительность к облучению. Например, при одинаковой эквивалентной дозе облучения H R возникновение рака легких более вероятно, чем щитовидной железы. Поэтому, введено понятие эффективной эквивалентной дозы.

где: W T – весовой коэффициент для биологической ткани.

Ионизирующее излучение (ИИ) – это излучение, взаимодействие которого со средой приводит к образованию в этой среде ионов разных знаков. Излучение считается ионизирующим, если оно способно разрывать химические связи молекул. Ионизирующее излучение делят на корпускулярное и фотонное.

Радиоволны, световые волны, тепловая энергия Солнца не относятся к ионизирующим излучениям, так как они не вызывают повреждения организма путем ионизации.

Корпускулярное – это поток частиц с массой отличной от нуля (электроны, протоны, нейтроны, альфа-частицы).

Фотонное – это электромагнитное излучение, косвенно ионизирующее излучение (гамма излучение, характеристическое излучение, тормозное излучение, рентгеновское излучение, аннигиляционное излучение).

Альфа-излучение – это поток альфа-частиц (ядер атомов гелия), испускаемых при радиоактивном распаде, а также при ядерных реакциях и превращениях. Альфа-частицы обладают сильной ионизирующей способностью и незначительной проникающей способностью. В воздухе они проникают на глубину несколько сантиметров, в биологической ткани – на глубину доли миллиметра, задерживается листом бумаги, тканью одежды. Альфа-излучение особо опасно при попадании его источника внутрь организма с пищей или с вдыхаемым воздухом.

Бета-излучение – это поток электронов или позитронов, испускаемых ядрами радиоактивных элементов при бета-распаде. Их ионизирующая способность меньше, чем у альфа-частиц, но проникающая способность во много раз больше, и составляет десятки сантиметров. В биологической ткани они проникают на глубину до 2 см, одеждой задерживается только частично. Бета-излучение опасно для здоровья человека, как при внешнем, так и при внутреннем облучении.

Протонное излучение – это поток протонов, составляющих основу космического излучения, а также наблюдаемых при ядерных взрывах. Их пробег в воздухе и проникающая способность занимают промежуточное положение между альфа и бета-излучением.

Нейтронное излучение – поток нейтронов, наблюдаемых при ядерных взрывах, особенно нейтронных боеприпасов и работе ядерного реактора. Последствия его воздействия на окружающую среду зависят от начальной энергии нейтрона, которая может меняться в пределах 0,025 –300 МэВ.

Гамма-излучение – электромагнитное излучение (длина волны 10 –10 –10 –14 м), возникающее в некоторых случаях при альфа и бета-распаде, аннигиляции частиц и при возбуждении атомов и их ядер, торможении частиц в электрическом поле. Проникающая способность гамма-излучения значительно больше, чем у вышеперечисленных видов излучений. Глубина распространения гамма-квантов в воздухе может достигать сотен и тысяч метров. Ионизирующая способность (косвенная) значительно меньше, чем у вышеперечисленных видов излучений. Большинство гамма-квантов проходит через биологическую ткань, и только незначительное количество поглощается телом человека.

Тормозное излучение – фотонное излучение с непрерывным энергетическим спектром, испускаемое при уменьшении кинетической энергии заряженных частиц. Воздействие на окружающую среду такое, как и гамма-излучения.

Характеристическое излучение – фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома. Воздействие на биологическую ткань аналогично гамма-излучению.

Аннигиляционное излучение – фотонное излучение, возникающее в результате аннигиляции частицы и античастицы (например, позитрона и электрона). Воздействие на биологическую ткань аналогично гамма-излучению.

Похожие статьи

© 2024 dvezhizni.ru. Медицинский портал.