Ритмы организма человека. Внутренний ритм организма

Общие представления о биоритмах. Ритмичность процессов прослеживается во всем и везде: по закону ритма живут человек и вся окружающая его природа, Земля, Космос.

Когда-то природа «завела» биологические часы живого так, чтобы они шли в соответствии с присущей ей самой цикличностью. Смена дня и ночи, чередование времен года, вращение Луны вокруг Земли и Земли вокруг Солнца — изначальные условия развития организма. Биологический ритм стал общим принципом живого, закрепленным в наследственности, неотъемлемой чертой жизни, ее временной основой, ее регулятором.

Биоритмы — периодические изменения интенсивности и характера биологических процессов, которые самоподдерживаются и самовоспроизводятся в любых условиях.

Биоритмы характеризуются:

  • периодом — продолжительностью одного цикла колебаний в единицу времени;
  • частотой ритмов - частотой периодических процессов в единицу времени;
  • фазой - частью цикла, измеряемой в долях периода (начальная, конечная и т.д.);
  • амплитудой - размахом колебаний между максимумом и минимумом.

По продолжительности выделяют следующие циклы:

  • высокочастотные — продолжающиеся до 30 минут;
  • среднечастотные — от 0,5 до 24 часов, 20-28 часов и 29 часов — 6 суток;
  • низкочастотные — с периодом 7 суток, 20 суток, 30 суток, около одного года.

Таблица. Классификация биоритмов человека

Характеристика

Продолжительность

Ультрадианные (уровень работоспособности, гормональные сдвиги и др.)

Циркадианные (уровень работоспособности, интенсивность метаболизма и деятельности внутреннихорганов и др.)

Инфрадианные

28 ч — 4 суток

Околонедельные (циркасептанные) (например, уровень работоспособности)

7 ± 3 суток

Околомесячные (циркатригинтанные)

30 ± 5 суток

Ультраннулярные

Несколько месяцев

Цирканнуальные

Около одного года

Для человеческого организма характерен целый спектр ритмопроявляющихся процессов и функций, который объели- нен в единую согласованную во времени колебательную систему, обладающую следующими особенностями: наличием связи между ритмами разных процессов; наличием синхронности, или кратности, в протекании тех или других ритмов; наличием иерархичности (подчинением одних ритмов другим).

На рис. 1 представлена схема биоритмов, которая отражает часть спектра ритмов жизнедеятельности человека. (На самом деле в человеческом организме ритмично все: работа внутренних органов, тканей, клеток, электрическая активность мозга, обмен веществ.)

У человека выявлены и исследованы среди многих других четыре основных биологических ритма:

Полутора часовой ритм (от 90 до 100 минут) чередования нейрональной активности мозга как во время бодрствования, так и во время сна, являющийся причиной полуторачасовых колебаний умственной работоспособности и полуторачасовых циклов биоэлектрической активности мозга во время сна. Через каждые полтора часа человек испытывает попеременно то низкую, то повышенную возбудимость, то умиротворенность, то беспокойство;

Месячный ритм. Месячной цикличности подчинены определенные изменения в организме женщины. Недавно установлен околомесячный ритм работоспособности и настроения мужчин;

Годовой ритм. Отмечаются циклические изменения организма ежегодно во время смены времен года. Установлено, что в разное время года различно содержание гемоглобина и холестерина в крови; мышечная возбудимость выше весной и летом и слабее осенью и зимой, максимальная светочувствительность глаза тоже наблюдается весной и ранним летом, а к осени и зиме падает.

Высказываются предположения, что существуют ритмы 2-, 3- и 11-летние — 22-летние, наиболее вероятной считается связь их с метеорологическими и гелиогеографическими явлениями, обладающими примерно такой же цикличностью.

Кроме ритмов, приведенных выше, жизнь человека подчиняется социальным ритмам. К ним люди приучаются постоянно. Один из них — недельный. Дробя в течение многих веков каждый месяц на недели — шесть рабочих дней, один день для отдыха, человек сам приучил себя к нему. Этот режим, не существующий в природе и появившийся в результате социальных причин, стал неотъемлемой меркой жизни человека и общества. В недельном цикле меняется прежде всего работоспособность. Причем одинаковая закономерность прослеживается у групп населения, различающихся по возрасту и характеру труда: у рабочих и инженеров на промышленных предприятиях, у школьников и студентов. Понедельник начинается с относительно низкой работоспособности, от вторника к четвергу — самый гребень недели — она набирает максимальный подъем, а с пятницы опять падает.

Рис. 1. Ритмы жизнедеятельности человека

Биологическое значение биоритмов. Биоритмы выполняют в организме человека по крайней мере четыре основные функции.

Первая функция — оптимизация жизнедеятельности организма. Цикличность — базисное правило поведения биосистем, необходимое условие их функционирования. Это связано с тем, что биологические процессы не могут интенсивно протекать длительное время; они представляют собой чередование максимума и минимума, ибо доведение функции до максимума лишь в определенные фазы каждого периода цикла экономнее, чем стабильное непрерывное поддержание такого максимума. В биосистемах за всякой активностью должно следовать ее снижение для отдыха и восстановления.

Поэтому принцип ритмической смены активности, при которой происходит расход энергетических и пластических ресурсов, и ее торможения, предназначенного для восстановления этих расходов, изначально заложен при возникновении (рождении) любой биологической системы, включая человека.

Вторая функция — отражение фактора времени. Биоритмы — биологическая форма преобразования шкалы объективного, астрономического времени в субъективное, биологическое время. Целью его является соотнесение циклов жизненных процессов с циклами объективного времени. Основными характеристиками биологического времени как особой формы движущейся материи являются его независимость от нашего сознания и взаимосвязь его с физическим временем. Благодаря этому осуществляются временная организация биологических процессов в организме и согласование их с периодами колебаний внешней среды, что обеспечивает адаптацию организма к окружающей среде и отражает единство живой и неживой природы.

Третья функция — регуляторная. Ритмование — это рабочий механизм создания функциональных систем в центральной нервной системе (ЦНС) и базисный принцип регуляции функций. Согласно современным представлениям, создание рабочих механизмов в ЦНС обеспечивается синхронизацией ритмической высокочастотной деятельности составляющих ее нервных клеток. Таким образом осуществляется объединение отдельных нервных клеток в рабочие ансамбли, а ансамблей — в общую синхронную функциональную систему. Ритмование разрядов мозга имеет принципиальное значение для преобладания главной в данный момент реакции среди прочих. Так создается доминанта, господствующая в данное время функциональная система ЦНС. Она объединяет в едином ритме различные центры и определяет текущую последовательную их деятельность путем навязывания «своего» ритма. Так в структурах мозга создаются нервные программы, определяющие поведение.

Четвертая функция — интеграционная (объединительная). Биоритм — это рабочий механизм объединения всех уровней организации организма в единую суперсистему. Интеграция реализуется по принципу иерархичности: высокочастотные ритмы низкого уровня организации подчиняются средне- и низкочастотным уровням более высокого уровня организации. Иначе говоря, высокочастотные биоритмы клеток, тканей, органов и систем организма подчиняются базовому среднечастотному суточному ритму. Это объединение осуществляется по принципу кратности.

Общая характеристика биоритмов

Жизнь человека неразрывно связана с фактором времени. Одна из эффективных форм приспособления организма к внешней среде — ритмичность физиологических функций.

Биоритм — автоколебательный процесс в биологической системе, характеризующийся последовательным чередованием фаз напряжения и расслабления, когда тот или иной параметр последовательно достигает максимального или минимального значения. Закон, по которому происходит этот процесс, может быть описан различными функциями, а в самом простом варианте — синусоидальной кривой.

К настоящему времени у человека и животных описано около 400 биоритмов. Естественно, что возникла необходимость их классифицировать. Предложено несколько принципов классификации биоритмов. Чаще всего классифицируют их на основании частоты колебаний (осцилляции), или периодов. Выделяют следующие основные ритмы:

  • Высокой частоты, или микроритмы (от долей секунды до 30 мин). Примером могут служить осцилляции на молекулярном уровне (синтез и распад АТФ и др.), частота сокращений сердца (ЧСС), частота дыхания, периодичность перистальтики кишечника.
  • Средней частоты (от 30 мин до 28 ч). В эту группу входят ультрадианные (до 20 ч) и циркадные, или циркадианные (околосуточные — 20-28 ч) ритмы. Пример — чередование сна и бодрствования. Циркадианный ритм является основным ритмом физиологических функций человека.
  • Мезоритмы (длительностью от 28 ч до 6-7 дней). Сюда относятся циркасептальные ритмы (около 7 дней). С ними связана работоспособность человека, они в значительной степени обусловлены социальным фактором — рабочей неделей с отдыхом на 6-7-й день.
  • Макроритмы (от 20 дней до I года). К ним относятся циркануальные (цирканные), или окологодовые ритмы. В эту группу входят сезонные и околомесячные ритмы (лунный ритм, овариально-менструальный цикл у женщин и т.д.).
  • Мегаритмы (длительностью в десяток или многие десятки лет). Наиболее известный из них — 11-летний ритм активности Солнца, с которым связаны некоторые процессы на Земле — инфекционные заболевания человека и животных (эпидемии и эпизоотии).

Характеристику каждого биоритма можно описать методами математического анализа и изобразить графически. В последнем случае речь идет о биоритмограмме, или хронограмме.

Как видно из рис. 2, биоритмограмма имеет синусоидальный характер. В ней различают временной период, фазы напряжения и расслабления, амплитуду напряжения, амплитуду расслабления, ак- рофазу данного биоритма.

Временной период — важнейшая характеристика биоритма. Это отрезок времени, по истечении которого происходит повторение функции или состояния организма.

Рис. 2. Схема биоритмограммы на примере циркадного ритма ЧСС: 1 — временной период (сутки); 2 — фаза напряжения (день); 3 — фаза расслабления (ночь); 4 — амплитуда напряжения; 5 — амплитуда расслабления; 6 — акрофаза

Фазы напряжении и расслабления характеризуют усиление и снижение функции в течение суток.

Амплитуда — разница между максимальной и минимальной выраженностью функции в дневное (амплитуда напряжения) и ночное (амплитуда расслабления) время. Общая амплитуда — разница между максимальной и минимальной выраженностью функции в рамках всего суточного цикла.

Акрофаза — время, на которое приходится наивысшая точка (максимальный уровень) данного биоритма.

В некоторых случаях кривая приобретает уплощенный или платообразный вид. Это встречается при малой амплитуде напряжения. Другими разновидностями являются инвертированные и двухвершинные биоритмограммы. Инвертированные кривые характеризуются снижением исходного уровня в дневное время, т.е. изменением функции в направлении, противоположном обычному. Это неблагоприятный признак.

Двухвершинные кривые отличаются двумя пиками активности в течение дня. Появление второго пика рассматривается в настоящее время как проявление адаптации к условиям существования. Так, например, первый пик работоспособности человека (11 — 13 ч) — это естественное проявление биоритма, связанное с дневной активностью. Второй подъем работоспособности, наблюдаемый в вечерние часы, обусловлен необходимостью выполнения домашних и других обязанностей.

Происхождение и регуляция биоритмов

Происхождение биоритмов определяется двумя факторами — эндогенным (внутренним, врожденным) и экзогенным (внешним, приобретенным).

Постоянные циклические колебания в различных системах организма складывались в процессе длительной эволюции, и теперь они являются врожденными. К ним относятся многие функции: ритмическая работа сердца, дыхательной системы, мозга и т.д. Эти ритмы называют физиологическими. Выдвинуто несколько гипотез эндогенной природы биоритмов. Наибольшее число сторонников имеет мультиосцилляторная теория, согласно которой в пределах многоклеточного организма (человека) может функционировать главный (центральный) водитель ритма (биологические часы), навязывающий свой ритм всем остальным системам, не способным генерировать собственные колебательные процессы. Наряду с центральным водителем ритма возможно существование второстепенных осцилляторов, иерархически подчиненных ведущему.

Биоритмы, зависящие от циклических изменений окружающей среды, являются приобретенными, и их называют экологическими. Эти ритмы испытывают большое влияние космических факторов: вращение Земли вокруг своей оси (солнечные сутки), энергетическое влияние Луны и циклических изменений активности Солнца.

Биоритмы в организме складываются из эндогенного — физиологического и экзогенного — экологического ритмов. Средняя частота ритмов обусловлена сочетанием эндогенных и экзогенных факторов.

Считается, что центральным водителем ритма является эпифиз (железа внутренней секреции, находящаяся в промежуточном мозге). Однако у человека эта железа функционирует только до 15-16 лет. По мнению многих ученых, роль центрального синхронизатора (биологических часов) у человека берет на себя область головного мозга, называемая гипоталамусом.

Контроль смены состояния бодрствования и сна зависит в значительной степени от светового фактора и обеспечивается связями коры головного мозга и таламуса (центр, в котором собираются импульсы от всех органов чувств), а также активизирующими восходящими влияниями ретикулярной формации (сетчатые структуры мозга, выполняющие активизирующую функцию). Важную роль играют прямые связи сетчатки глаза с гипоталамусом.

Прямые и опосредованные связи коры головного мозга и гипоталамических структур обеспечивают возникновение системы гормонального контроля периферической регуляции, действующей на всех уровнях — от субклеточного до организменного.

Таким образом, в основе временной организации живой материи лежит эндогенная природа биоритмов , коррегируемая экзогенными факторами. Устойчивость эндогенного компонента биологических часов создается взаимодействием нервной и гуморальной (лат. humor- жидкость; здесь — кровь, лимфа, тканевая жидкость) систем. Слабость одного из этих звеньев может привести к (нарушению биоритмов) и последующим нарушениям функций.

Исследователями доказано, что для постоянного совершенствования и тренировки приспособительных механизмов организм периодически должен испытывать стресс, определенный конфликт с окружающей его физической и социальной средой. Если учесть, что периодичность заложена в самой природе живых систем, то становится ясным, что именно такое динамическое взаимодействие организма со средой обеспечивает его стабильность и устойчивую жизнеспособность. Основу всякой активной деятельности составляют процессы интенсивного расходования жизненных ресурсов организма, и в то же время эти реакции являются мощным стимулом для еще более интенсивных восстановительных процессов. Можно утверждать, что динамическая синхронизация — взаимодействие эндогенных и экзогенных ритмов — придает организму живучесть и устойчивость.

В течение прошлого года сразу несколько компаний выпустили на рынок необычные изобретения. Весной финская Valkee презентовала наушники, которые не играют музыку, но оснащены светодиодами, чтобы светить в уши. Осенью австралийские ученые из Университета Флиндерса объявили о завершении испытаний и поступлении в продажу очков, которые не улучшают зрение и не защищают от солнца, а, наоборот, светят в глаза. С помощью этих устройств разработчики предлагают бороться с джетлэгом. Джетлэг (от англ. jet — самолет, lag — замедление, отставание) — синдром смены часового пояса, несовпадение внутренних (циркадных) ритмов организма с суточным ритмом. Термин был придуман американским журналистом и путешественником Хорасом Саттоном. «Если вы мечтаете стать успешным человеком, путешествовать по миру и однажды заехать в Катманду на чашку кофе к королю Махендре, будьте готовы столкнуться с джетлэгом — слабостью, не связанной с похмельем. Самолеты летают так быстро, что ритмы вашего собственного тела остаются далеко позади», — написал он в газете Los Angeles Times 13 февраля 1966 года. Действительно, острый джетлэг, вызываемый авиаперелетом на дальние расстояния, можно описать как состояние, близкое к похмелью: голова трещит, руки дрожат, мысли спутаны, в животе урчит, заснуть в нужное время не получается.

В 1919 году англичане Джон Олкок и Артур Браун впервые перелетели на бомбардировщике с острова Ньюфаундленд в Ирландию. Расстояние в 3000 км они преодолели всего за 16 часов. До этого момента люди перемещались со скоростями, недостаточными для рассогласования внутренних часов с внешними. Поэтому можно предположить, что Олкок и Браун были первыми людьми, испытавшими острую рассинхронизацию биологических ритмов.

В 1965 году интерес к сбоям циркадных ритмов проявили в США. «Федеральное управление гражданской авиации настолько обеспокоено влиянием джетлэга на пилотов, не говоря уже о дипломатах и бизнесменах, что провело масштабное исследование под громким названием «Межконтинентальный биомедицинский авиационный проект», — писал в той же статье в LAT Саттон. Специалисты управления проанализировали состояние летчиков после серии межконтинентальных перелетов и пришли к выводу, что быстрая смена часовых поясов снижает внимание и работоспособность пилотов, мешает принимать ключевые решения.

Спустя ровно 50 лет после полета Олкока и Брауна, в 1969 году, в воздух поднялся Boeing-747 — первый в мире дальнемагистральный широкофюзеляжный самолет, которому было суждено стать символом доступных трансконтинентальных путешествий. Так десинхроноз превратился из профессиональной болезни летчиков в известную всем путешественникам проблему, главные признаки которой — несварение желудка и бессонница. Но сегодня ученые говорят о том, что жертв острого джетлэга, вызванного перелетами, значительно меньше, чем людей, которые никуда не летают, но страдают от джетлэга хронического. В группе риска все, кто не спит по ночам, работает посменно или вахтовым методом.

Жертвы джетлэга

«Мы подходили к всесоюзному первенству уверенно, одерживая победы в каждом из матчей. И вдруг фиаско — наша волейбольная сборная проиграла местной команде. Для игроков день не был днем — наши организмы работали в ночном режиме. По времени Владивостока, откуда мы прилетели, игра началась в три часа ночи, закончилась в пять утра», — рассказывает Сергей Ежов, участник всесоюзного первенства, ныне доктор медицинских наук, профессор Тихоокеанского государственного экономического университета.

В начале 1970-х годов, будучи студентом медицинского факультета, он заинтересовался хронофизиологией географических перемещений и рассогласованием биологических ритмов.

«В спорте высоких достижений от победы отделяют доли секунд и миллиметры. Повлиять на результат может недостаточная концентрация внимания или непривычная работа сердца. В 1995 году доктор Лоренс Рехт проанализировал исходы более тысячи бейсбольных матчей высшей лиги в СШАс 1991 по 1993 год. Согласно его выводам, опубликованным в журнале Nature, «авиаперемещения в восточном направлении снижают индивидуальную выносливость спортсмена более чем в шесть раз».

В обход сетчатки

Человек настраивает свои биологические часы в зависимости от освещенности. Рептилии, рыбы и птицы отличают день от ночи без участия сетчатки глаз: тонкие кости черепа позволяют свету проникать в мозг напрямую. С людьми, как и со всеми приматами, дела обстоят иначе. Биологические часы у Homo sapiens «встроены» в гипоталамус, точнее, в супрахиазматическое ядро. Эта часть мозга лежит над перекрестом зрительных нервов, через которые и получает от сетчатки информацию об освещенности.

Внутренние ритмы человека примерно соответствуют суткам: человек засыпает и просыпается с периодичностью 24 плюс-минус три часа. Ориентируясь на зрение, мозг выбрасывает в кровь мелатонин — гормон сна, не позволяя организму отставать или опережать суточные ритмы. При быстрой смене часового пояса выработка мелатонина сбивается с устоявшегося графика и биологические ритмы дрейфуют. Что происходит с мозгом без световой подстройки, видно на примере незрячих. «Зачастую у слепых обнаруживается фотонезависимый цикл работы эндокринной и метаболической систем, а также режимы сна — бодрствования и поведения», — объясняет Мэри Чой, преподаватель Колледжа Туро в Нью-Йорке. Известно, что организм слепых людей самостоятельно отсчитывает время для завтрака или ночного сна. Однако если в определенные часы слепым давать мелатонин, они начинают жить как зрячие, установили в 2005 году ученые из Орегонского университета здоровья и нации: исчезает циркадный дрейф в работе внутренних органов, который мешает не только засыпать, но и переваривать пищу.

Сбои в смене дня и ночи нарушают и цикличность выработки кортизола — один из гормонов бодрствования. У большинства людей его уровень в крови нарастает с полуночи, достигая максимальной концентрации к 6-8 часам утра, когда почти прекращается выработка мелатонина. Поэтому, если вовремя не засыпать, организм ответит сонливостью днем и бессонницей в ночное время. Следствием хронического нарушения выработки этих гормонов становится ожирение и заболевания сердца.

Недавно для путешественников были разработаны приборы, которые обманывают мозг, создавая искусственное освещение. Доктор Маркку Тимонен из Университета Оулу в Финляндии предложил транскраниальный способ доставки терапевтической порции света, то есть напрямую в мозг. Для этой цели и созданы наушники Valkee. Нехитрое устройство внешне напоминает плеер, но оно не играет, а светит в фоточувствительные зоны мозга в обход сетчатки — через слуховые каналы. Исследователи утверждают: 8-12 минут ежедневной светотерапии достаточно для избавления от зимней депрессии. Весной 2012 года авиакомпания FINAIR уже начала выдавать эти наушники своим пассажирам в дорогу — желающим «просветлить» мозги для борьбы с джетлэгом продолжительность сеанса придется подбирать самим.

Детище австралийских сомнологов — очки Re-Timer — помогает пассажирам не чувствовать сонливость по прибытии к месту назначения. Специальные светодиоды направляют в глаза мягкий зеленоватый свет, искусственно удлинняя световой день путешественника. Чтобы избежать проблем с пищеварением, вызванных, например, перелетом из Сиднея в Берлин, путешественникам советуют надевать очки по вечерам за три дня до вылета и сутки спустя после прилета. Сегодня многие уже знают, как бороться с постперелетным поносом, бессонницей и тяжелой головой, — об этом даже предупреждают перед вылетом в аэропорту. Значительно меньше ясности в том, что делать с хроническим джетлэгом. Ведь его испытывает абсолютное большинство современных людей.

Отупение от сдвига

Десятки исследовательских групп по всему миру заставляют подопытных животных «летать», искусственно изменяя продолжительность дня. Исследователи из Университета Нью-Джерси дважды в неделю удлиняли период бодрствования животных на шесть-семь часов (перелет из Владивостока в Москву). В таких условиях у животных ослабевает противораковый иммунитет: клетки NK (natural killers) сбиваются с циркадных ритмов и становятся менее агрессивными по отношению к опухоли. Это подтвердилось и в эпидемиологических экспериментах: лабораторные «перелетные» крысы быстрее умирали от рака легких.

«NK — особый вид лимфоцитов, уничтожающих не только инфицированные, но и опухолевые клетки, — объясняет Баходур Камолов, кандидат медицинских наук, научный сотрудник РОНЦ имени Блохина. — Есть данные, согласно которым индивидуальная устойчивость организма к онкологическим заболеваниям связана с количеством NK, продуцируемых в костном мозге, лимфатических узлах, тимусе и селезенке».

В исследовании китайских ученых из лаборатории State Key десятидневного джетлэга хватило, чтобы частота метастазирования карциномы Льюис у животных увеличилась почти в 3,5 раза. Правда, теперь ахиллесовой пятой противораковой защиты оказались не клетки NK, а гены-онкосупрессоры, необходимые для подавления развития опухоли.

Мыши и хомяки в тех же условиях просто тупели — теряли способность усваивать новую информацию и даже забывали, где кормушка, доказали биологи из Мичиганского университета.

Четыре факта о джетлэге

Отправляясь в дальнее путешествие, важно учитывать следующее.

1. С запада на восток организму перемещаться сложнее, чем в обратном направлении. Кстати, в 1965 году исследование состояния американских летчиков дало обратные результаты, вероятно, из-за недостаточной статистики.

2. Трое суток — минимальный период, необходимый молодому здоровому организму для адаптации после пересечения двух и более часовых поясов.

3. Перелет может напомнить о старых болезнях. «По результатам 30-летней работы я могу смело утверждать, что с десинхронозом связаны обострения хорошо компенсированных хронических заболеваний или инфекций, — говорит Иван Пигарев. — Не стоит удивляться, если вдруг на курорте у человека из-за снижения иммунитета проявляется герпес, а по возвращении домой обостряются уже залеченные травмы. Кстати, возвращение домой — более болезненный для организма процесс, чем путешествие на курорт».

4. Таблетки мелатонина предупреждают острый джетлэг. Планируя перемещение на расстояние более пяти часовых поясов, следует в день отлета принять мелатонин в период, который будет соответствовать ночному времени в месте прибытия, советуют врачи. При путешествии на расстояние более семи часовых поясов принимать мелатонин необходимо за два-три дня до путешествия.

Хроническое путешествие

Чтобы ощутить все последствия джетлэга, вовсе не обязательно дважды в неделю летать из Владивостока в Москву и обратно. Достаточно путешествовать на самолете один раз в полтора-два месяца. Или работать вахтовым методом. Хронический джетлэг постоянно испытывают бизнесмены, неспящие студенты, дальнобойщики и новоиспеченные мамы. Всем им знакомо состояние, схожее с легким похмельем, которое выветривается после чашки кофе. Изучая адаптационные способности спортсменов, доктор медицинских наук, профессор Тихоокеанского государственного экономического университета Сергей Ежов показал, что острая рассинхронизация не исчезает сразу, а переходит в латентную стадию: «Даже спустя сорок дней после перелета на расстояние семи часовых поясов, организм не возвращается в привычный режим работы. Десинхроноз наблюдается не только на молекулярном и клеточном уровне, но и во взаимодействии полушарий мозга между собой». Нарушение этих связей может приводить к заторможенности реакции.

Какую роль выполняет сон и чем грозит его отсутствие, наглядно демонстрируют эксперименты над животными. Крыса сидит на диске, установленном над водой, к ее голове подведены электроды. Как только животное засыпает, диск автоматически начинает вращаться. Грызун просыпается и, чтобы не упасть в воду, семенит лапками. Такую модель эксперимента биологи используют для изучения эффектов отсутствия сна. Для летального исхода крысам достаточно нескольких бессонных суток. От чего умирают лишенные сна грызуны? От состояния, близкого синдрому приобретенного иммунодефицита. «В таких экспериментах у животных не обнаруживается нарушений со стороны нервной системы (мозга), зато очевидны нарушения иммунной системы, — объясняет Иван Пигарев, доктор биологических наук, ведущий научный сотрудник Института проблем передачи информации РАН. — У умерших животных выявляются серьезные заболевания практически всех внутренних органов». Иван Пигарев — автор новой гипотезы сна, согласно которой во время отдыха мозг «разговаривает» с внутренними органами, не имеющими представительства в коре, — желудком, сердцем, кишечником, печенью и другими.

Ранее считалось, что мозг отдыхает, подобно мышце. Пигарев показал, что во сне он не просто восстанавливается, а устраивает «летучку» между внутренними органами. В ходе этого «селекторного совещания» между внутренними органами анализируется прошедший день, решаются накопившиеся информационные проблемы и устраняются ошибки. Мозг решает, куда подбросить гормонов, как переварить соевую сосиску и вообще не загнуться от съеденного перед сном гамбургера. О возможности таких «мозговых летучек» Иван Пигарев задумался около полувека назад, а надежные подтверждения получил лишь в 1990-е. В своем первом эксперименте он стимулировал электродами кишечник спящей кошки. Опыты доказали, что во время сна мозг занимается менеджментом, помогая внутренним органам и иммунной системе разобраться с тем, что произошло за прошедший день. Эксперименты Пигарева объясняют серьезные последствия хронического джетлэга: если «летучки», которые устраивает во сне мозг, постоянно срывать, это грозит проблемами с пищеварением и сердцем.

Однако люди склонны адаптироваться к изменяющимся условиям жизни. За годы эволюции человек научился переваривать даже коровье молоко, что помогло ему в освоении северных широт. В будущем мы станем летать только чаще, спать меньше, а работать больше, и не всегда в родных часовых поясах. Так, может, организмы людей будущего найдут способы борьбы и с джетлэгом? «Нет, — уверен Иван Пигарев. — Такой сценарий вряд ли возможен. Слишком сложен человеческий мозг, и ни к перелетам, ни к отсутствию полноценного сна он не привыкнет.

Более того, есть люди, которые вообще не могут приспособиться к новому часовому поясу, уверен Иван Пигарев. В момент рождения у человека в мозгу «отпечатывается» физиологическая принадлежность к часовому поясу, и организм не способен поменять место прописки. Это утверждение подкрепляется работами, проведенными в Лаборатории функциональных резервов человека РАН. Согласно их эпидемиологическим данным, заболеваемость среди пришлого населения (например, переехавших в Сургут нефтяников) в 3-4 раза выше, чем у местного населения. С Пигаревым согласен профессор Сергей Ежов: «Все зависит от хроноадаптационных способностей организма. Похоже, приучить себя к джетлэгу невозможно, хроноадаптационный потенциал, по всей видимости, имеет наследственную природу».

«Максимум, чего может достичь Homo sapiens, — считает Иван Пигарев, — «превратиться в кролика». Эти животные не испытывают десинхроноза, потому что у них непродолжительный сон сменяется столь же недолгим периодом бодрствования. За короткие промежутки организм не успевает кардинально перестроить свой гормональный статус и накопить большое количество ошибок, потому для восстановления и спать долго не приходится».

Как и для акупунктурных точек) - организм готовится к пробуждению.

К 5ч утра начинает снижаться продукция , растет температура тела.

Незадолго до пробуждения, около 5:00 часов утра по географическому, реальному местному времени, в организме начинается подготовка к предстоящему бодрствованию: нарастает продукция "гормонов активности" - кортизола, адреналина. В крови увеличивается содержание гемоглобина и сахара, учащается пульс, повышается артериальное давление (АД), углубляется дыхание. Начинает повышаться температура тела, увеличивается частота фаз быстрого сна, растет тонус симпатической нервной системы. Все эти явления усиливаются под действием света, тепла и шума.

Утро

К 7-8 часам у "сов" - пик выброса в кровь кортизола (основного гормона надпочечников). У "жаворонков" - раньше, в 4-5 ч, у остальных хронотипов - около 5-6ч.

С 7 до 9 утра - подъём, физкультура, завтрак (приём пищи - после восхода Солнца).

9 часов - высокая работоспособность, быстрый счёт, хорошо работает кратковременная память.

С утра - усвоение новой информации, на свежую голову.

Через два-три часа после пробуждения - поберечь сердце.

9-10ч - время строить планы, "шевелить мозгами". «Утро вечера мудренее»

9 - 11 ч - повышается иммунитет.

Эффективны лекарства, усиливающие сопротивляемость организма болезням.

День

До 11 часов - организм в отличной форме.

12 - уменьшить физические нагрузки.

Активность головного мозга снижается. Кровь приливает к органам пищеварения. Постепенно начинает снижаться артериальное давление, пульс и мышечный тонус, соответственно, но температура тела растёт и дальше.

13 +/- 1 час - обеденный перерыв

13-15 - полуденный и послеобеденный отдых (обед, "тихий час", )

После 14 часов - минимальна болевая чувствительность, наиболее эффективно и продолжительно действие обезболивающих препаратов.

15 - работает долговременная память. Время - вспомнить и хорошо запомнить нужное.

После 16 - подъём работоспособности.

15-18 ч - самое время заняться спортом. Жажду, в это время, обильно и часто утолять чистой кипяченой водой, горячей-тёплой - в зимнее время (для профилактики простуд, желудочно-кишечных заболеваний и болезней почек). Летом можно и холодную минералку.

16-19 - высокий уровень интеллектуальной активности. Домашние дела

Вечер

19 +/- 1час - ужин.

Углеводная пища (натуральная - мёд и т.п.) способствует выработке особого гормона - серотонина, который благоприятствует хорошему ночному сну. Мозг активен.

После 19 часов - хорошая реакция

После 20 часов психическое состояние стабилизируется, улучшается память. После 21 часа почти в 2 раза возрастает количество белых кровяных телец (повышается иммунитет), температура тела понижается, продолжается обновление клеток.

С 20 до 21 - для здоровья полезна лёгкая физкультура, пешие прогулки на свежем воздухе

После 21 часа - организм готовится к ночному отдыху, температура тела понижается.

22 часа - время для сна. Иммунитет усилен, чтобы охранять организм во время ночного отдыха.

Ночь

В первой половине ночи, когда преобладает медленный сон, выделяется максимальное количество соматотропного гормона, стимулирующего процессы клеточного размножения и роста. Недаром говорят, что во сне мы растем. Происходит регенерация и очищение тканей тела.

2 часа - у тех, кто не спит в это время, возможно состояние депрессии.

2-4 часа - самый глубокий сон. Минимальны температура тела и уровень кортизола, максимально содержание мелатонина в крови.

Внешние ритмы

Внешние ритмы имеют географическую природу, связаны с вращением Земли относительно Солнца и Луны относительно Земли (рис. 2).

Рис 2.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное электромагнитное поле, морские приливы и отливы и др. под влиянием этого вращения закономерно изменяются. На живые организмы воздействуют и такие космические ритмы, как периодические изменения солнечной активности. Для Солнца характерен 11-летний и целый ряд других циклов. Существенное влияние оказывают на климат нашей планеты изменения солнечной радиации. Помимо циклического воздействия абиотических факторов внешними ритмами для любого организма являются и закономерные изменения активности, а также поведение других живых существ.

Внутренние, физиологические, ритмы

Внутренние, физиологические, ритмы возникли исторически. Ни один физиологический процесс в организме не осуществляется непрерывно. Обнаружена ритмичность в процессах синтеза ДНК и РНК в клетках, в синтезе белков, в работе ферментов, деятельности митохондрий. Деление клеток, сокращение мышц, работа желез внутренней секреции, биение сердца, дыхание, возбудимость нервной системы, т.е. работа всех клеток, органов и тканей организма подчиняется определенному ритму. Каждая система имеет свой собственный период. Действиями факторов внешней среды изменить этот период можно лишь в узких пределах, а для некоторых процессов практически невозможно. Данную ритмику называют эндогенной.

Внутренние ритмы организма соподчинены, интегрированы в целостную систему и выступают в конечном итоге в виде общей периодичности поведения организма. Организм как бы отсчитывает время, ритмически осуществляя свои физиологические функции. Как для внешних, так и для внутренних ритмов наступление очередной фазы прежде всего зависит от времени. Отсюда время выступает как один из важнейших экологических факторов, на который должны реагировать живые организмы, приспосабливаясь к внешним циклическим изменениям природы.

Изменения в жизнедеятельности организмов нередко совпадают по периоду с внешними, географическими циклами. Среди них такие, как адаптивные биологические ритмы - суточные, приливно-отливные, равные лунному месяцу, годовые. Самые важные биологические функции организма (питание, рост, размножение и т.д.) благодаря им совпадают с наиболее благоприятными для этого времени суток и года.

Суточный режим. Дважды в сутки, на рассвете и на закате, активность животных и растений на нашей планете меняется так сильно, что приводит нередко к практически полной, образно выражаясь, смене "действующих лиц". Это так называемый суточный ритм, обусловленный периодическим изменением освещенности из-за вращения Земли вокруг своей оси. В зеленых растениях фотосинтез идет только в светлое (дневное) время суток. У растений нередко открывание и закрывание цветков, поднятие и опускание листьев, максимальная интенсивность дыхания, скорость роста колеоптиля и др. приурочены к определенному времени суток (рис. 3).

Рис. 3.

Примечание в кружках показано примерное время открывания и закрывания цветков у разных растений

Некоторые виды животных активны лишь при солнечном свете, другие, напротив, его избегают. Различия между дневным и ночным образом жизни - явление сложное, и связано оно с разнообразными физиологическими и поведенческими адаптациями, которые выработаны в процессе эволюции. Млекопитающие обычно более активны ночью, но существуют и исключения, например человек: зрение человека, так же как и человекообразных обезьян, приспособлено к дневному свету. Свыше 100 физиологических функций, затронутых суточной периодичностью, отмечено у человека: сон и бодрствование, изменение температуры тела, ритма сердечных сокращений, глубины и частоты дыхания, объема и химического состава мочи, потоотделения, мышечной и умственной работоспособности и т.д. Таким образом, большинство животных подразделяется на две группы видов - дневную и ночную, практически не встречающиеся друг с другом (рис. 4).


Рис. 4.

Дневные животные (большая часть птиц, насекомых и ящериц) на закате солнца отправляются спать, а мир заполняют ночные животные (ежи, летучие мыши, совы, большинство кошачьих, травяные лягушки, тараканы и др.). Имеются виды животных с приблизительно одинаковой активностью как днем, так и ночью, с чередованием коротких периодов покоя и бодрствования. Такой ритм называют полифазным (ряд хищников, многие землеройки и т.д.).

Суточный ритм четко прослеживается в жизни обитателей крупных водных систем - океанов, морей, больших озер. Зоопланктон ежедневно совершает вертикальные миграции, поднимаясь к поверхности на ночь и опускаясь днем (рис. 5).


Рис. 5.

Вслед за зоопланктоном вверх-вниз перемещаются питающиеся им более крупные животные, а за ними - еще более крупные хищники. Считается, что вертикальные перемещения планктонных организмов происходят под влиянием многих факторов: освещенности, температуры, солености воды, гравитации, наконец, просто голода. Однако первичным все же является, по мнению большинства ученых, освещенность, так как ее изменение может вызывать изменение реакции животных на гравитацию.

У многих животных суточная периодичность не сопровождается существенными отклонениями физиологических функций, а проявляется в основном изменениями двигательной активности, например, у грызунов. Наиболее четко физиологические сдвиги в течение суток можно проследить у летучих мышей. В период дневного покоя летом многие из летучих мышей ведут себя как пойкилотермные животные. Температура их тела в это время практически совпадает с температурой среды. Пульс, дыхание, возбудимость органов чувств резко понижены. Для взлета потревоженная летучая мышь долго разогревается за счет химической теплопродукции. Вечером и ночью - это типичные гомойотермные млекопитающие с высокой температурой тела, активными и точными движениями, быстрой реакцией на добычу и врагов.

Периоды активности у одних видов живых организмов приурочены к строго определенному времени суток, у других могут сдвигаться в зависимости от обстановки. Например, активность жуков-чернотелок или пустынных мокриц сдвигается на разное время суток в зависимости от температуры и влажности на поверхности почвы. Из норок они выходят рано утром и вечером (двухфазный цикл), или только ночью (однофазный цикл), или в течение всего дня. Другой пример. Открывание цветков шафрана зависит от температуры, соцветий одуванчика от освещенности: в пасмурный день корзинки не раскрываются. Эндогенные суточные ритмы от экзогенных можно отличить экспериментальным путем. При полном постоянстве внешних условий (температура, освещенность, влажность и др.) у многих видов продолжают сохраняться длительное время циклы, близкие по периоду к суточному. Так, у дрозофил такой эндогенный ритм отмечается в течение десятков поколений. Следовательно, живые организмы приспосабливались воспринимать колебания внешней среды и соответственно им настраивали свои физиологические процессы. Это происходило в основном под влиянием трех факторов - вращении Земли по отношению к Солнцу, Луне и звездам. Эти факторы, накладываюсь друг на друга, воспринимались живыми организмами как ритмика, близкая, но не точно соответствующая 24-часовому периоду. Это и явилось одной из причин некоторого отклонения эндогенных биологических ритмов от точного суточного периода. Данные эндогенные ритмы получили название циркадных (от лат. circa - около и dies - день, сутки), т.е. приближающимися к суточному ритму.

У разных видов и даже у разных особей одного вида циркадные ритмы, как правило, различаются по продолжительности, но под влиянием правильного чередования света и темноты могут стать равными 24 ч. Так, если летяг (Pebromys volans) содержать в абсолютной темноте беспрерывно, то все они просыпаются и ведут активный образ жизни вначале одновременно, но вскоре - в разное время, и при этом каждая особь сохраняет свой ритм. При восстановлении правильного чередования дня и ночи периоды сна и бодрствования летяг снова становятся синхронными. Отсюда вывод, что внешний раздражитель (смена дня и ночи) регулируют врожденные циркадные ритмы, приближая их к 24-часовому периоду.

Стереотип поведения, обусловленный циркадным ритмом, облегчает существование организмов при суточных изменениях среды. Вместе с тем при расселении растений и животных, попадании их в географические условия с другой ритмикой дня и ночи прочный стереотип может быть неблагоприятным. Расселительные возможности тех или иных видов живых организмов нередко ограничены глубоким закреплением их циркадных ритмов.

Кроме Земли и Солнца, есть еще одно небесное тело, движение которого заметно сказывается на живых организмах нашей планеты, - это Луна. У самых различных народов существуют приметы, говорящие о влиянии Луны на урожайность сельскохозяйственных культур, естественных лугов и пастбищ, поведение человека и животных. Периодичность, равная лунному месяцу, в качестве эндогенного ритма выявлена как у наземных, так и водных организмов. В приуроченности к определенным фазам Луны периодичность проявляется в роении ряда комаров-хирономид и поденок, размножении японских морских лилий и многощетинковых червей палоло (Eunice viridis). Так, в необычном процессе размножения морских многощетинковых червей палоло, которые обитают в коралловых рифах Тихого океана, роль часов играют фазы Луны. Половые клетки червей созревают раз в год примерно в одно и то же время - в определенный час определенного дня, когда Луна находится в последней четверти. Задняя часть тела червя, набитая половыми клетками, отрывается и всплывает на поверхность. Яйца и сперма выходят наружу, и происходит оплодотворение. Верхняя половина тела, оставшаяся в норе кораллового рифа, к следующему году снова наращивает нижнюю половину с половыми клетками. Периодическое изменение интенсивности лунного света в течение месяца влияет на размножение и других животных. Начало двухмесячной беременности гигантских лесных крыс Малайзии обычно приходится на полнолуние. Не исключено, что яркий лунный свет стимулирует зачатие у этих ночных животных.

Периодичность, равная лунному месяцу, выявлена у ряда животных в реакции на свет и слабые магнитные поля, в скорости ориентации. Высказывается мнение, что на полнолуние приходятся периоды максимальной эмоциональной приподнятости у людей; 28-дневный менструальный цикл женщин, возможно, унаследован от предков млекопитающих, у которых синхронно со сменой фаз Луны менялась и температура тела.

Приливно-отливные ритмы. Влияние Луны прежде всего сказывается на жизни водных организмов морей и океанов нашей планеты, связано с приливами, которые обязаны своим существованием совместному притяжению Луны и Солнца. Движение Луны вокруг Земли приводит к тому, что существует не только суточная ритмика приливов, но и месячная. Максимальной высоты приливы достигают примерно раз в 14 дней, когда Солнце и Луна находятся на одной прямой с Землей и оказывают максимальное воздействие на воды океанов. Сильнее всего ритмика приливов сказывается на организмах, обитающих в прибрежных водах. Чередование приливов и отливов для живых организмов здесь важнее, чем смена дня и ночи, обусловленная вращением Земли и наклонным положением земной оси. Этой сложной ритмике приливов и отливов подчинена жизнь организмов, обитающих в первую очередь в прибрежной зоне. Так, физиология рыбки-грунина, обитающей у побережья Калифорнии, такова, что в самые высокие ночные приливы они выбрасываются на берег. Самки, зарыв хвост в песок, откладывают икру, затем самцы оплодотворяют ее, после чего рыбы возвращаются в море. С отступлением воды оплодотворенная икра проходит все стадии развития. Выход мальков происходит через полмесяца и приурочен к следующему высокому приливу.

Сезонная периодичность относится к числу наиболее общих явлений в живой природе. Непрекращающаяся смена времени года, обусловленная вращением Земли вокруг Солнца, всегда восхищает и поражает человека. Весной все живое пробуждается от глубокого сна, по мере того как тают снега и ярче светит солнце. Лопаются почки и распускается молодая листва, молодые зверята выползают из нор, в воздухе снуют насекомые и вернувшиеся с юга птицы. Смена времен года наиболее заметно протекает в зонах умеренного климата и северных широтах, где контрастность метеорологических условий разных сезонов года весьма значительна. Периодичность в жизни животных и растений является результатом приспособления их к годичному изменению метеорологических условий. Она проявляется в выработке определенного ежегодного ритма в их жизнедеятельности, согласованного с метеорологическим ритмом. Потребность в пониженных температурах в осенний период и в тепле в период вегетации означает, что для растений умеренных широт имеет значение не только общий уровень тепла, но и определенное распределение его во времени. Так, если растениям дать одинаковое количество тепла, но по-разному распределенного: одному теплое лето и холодную зиму, а другому соответствующую постоянную среднюю температуру, то нормальное развитие будет только в первом случае, хотя общая сумма тепла в обоих вариантах одинакова (рис. 6).


Рис. 6.

А - нормальная сезонная смена температур: теплое лето и холодная осень; Б - постоянная средняя температура. Фенофазы: 1 - прорастание, буто-низация; 3 - цветение и плодоношение; 4 - отмирание. Жирные линии - периоды холода или средней температуры. Выгонка при 18°С (по Т.К. Горышиной, 1979)

Потребность растений умеренных широт в чередовании в течение года холодных и теплых периодов получила название сезонного термопериодизма.

Нередко решающим фактором сезонной периодичности является увеличение продолжительности дня. Продолжительность дня меняется на протяжении всего года: дольше всего солнце светит в день летнего солнцестояния в июне, меньше всего - в день зимнего солнцестояния в декабре.

У многих живых организмов имеются специальные физиологические механизмы, реагирующие на продолжительность дня и в соответствии с этим изменяющие их образ действий. Например, пока продолжительность дня составляет 8 ч, куколка бабочки-сатурнии спокойно спит, так как на дворе еще зима, но как только день становится длиннее, особые нервные клетки в мозге куколки начинают выделять специальный гормон, вызывающий ее пробуждение.

Сезонные изменения мехового покрова некоторых млекопитающих также определяются относительной продолжительностью дня и ночи, мало или не зависят от температуры. Так, постепенно искусственно сокращая светлое время суток в вольере, ученые как бы имитировали осень и добивались того, что содержащиеся в неволе ласки и горностаи раньше времени меняли свой коричневый летний наряд на белый зимний.

Общепринято считать, что существует четыре времени года (весна, лето, осень, зима). Экологи же, изучающие сообщества умеренного пояса, обычно выделяют шесть времен года, различающиеся по набору видов в сообществах: зима, ранняя весна, поздняя весна, раннее лето, позднее лето и осень. Общепринятого деления года на четыре сезона не придерживаются птицы: состав сообщества птиц, куда входят как постоянные обитатели данной местности, так и птицы, проводящие здесь зиму или лето, все время меняется, при этом максимальной численности птицы достигают весной и осенью во время пролетов. В Арктике, по сути дела, существует два времени года: девятимесячная зима и три летних месяца, когда солнце не заходит за горизонт, почва оттаивает и в тундре просыпается жизнь. По мере продвижения от полюса к экватору смена времени года все меньше определяется температурой, а все больше и больше влажностью. В пустынях умеренного пояса лето - это период, когда жизнь замирает, и расцветает ранней весной и поздней осенью.

Смена времени года связана не только с периодами обилия или недостатка пищи, но и с ритмом размножения. У домашних животных (коров, лошадей, овец) и животных в естественной природной среде умеренного пояса потомство обычно появляется весной и подрастает в наиболее благоприятный период, когда больше всего растительной пищи. Поэтому может возникнуть мысль, что весной размножаются вообще все животные.

Однако размножение многих мелких млекопитающих (мышей, полевок, леммингов) часто не имеет строго сезонной приуроченности. В зависимости от количества и обилия кормов размножение может идти как весной, так и летом, и зимой.

В природе наблюдается кроме суточных и сезонных ритмов. многолетняя периодичность биологических явлений. Она определяется изменениями погоды, закономерной ее сменой под влиянием солнечной активности и выражается чередованием урожайных и неурожайных лет, лет обилия или малочисленности популяций (рис. 7).


Рис. 7.

Д.И. Маликов за 50 лет наблюдений отметил пять крупных волн изменений поголовья скота или столько, сколько было солнечных циклов (рис. 8). Такая же связь проявляется в цикличности изменений удоев молока, годовом приросте мяса, шерсти у овец, а также в других показателях сельскохозяйственного производства.

Рис. 8.

Периодичность изменений свойств вируса гриппа связывают с солнечной активностью.

Согласно прогнозу, после относительно спокойного по гриппу периода начала 80-х гг. XX в. с 2000 г. ожидается резкое усиление интенсивности его распространения.

Различают 5-6 - и 11-летние, а также 80-90-летние или вековые циклы солнечной активности. Это позволяет в какой-то мере объяснить совпадения периодов массового размножения животных и роста растений с периодами солнечной активности.

Ритмы присущи всем. И галактикам, и клеткам. И Жизнь на Земле циклична. Это давно доказано наукой. Смена дня и ночи, происходящая в результате вращения Земли вокруг своей оси, а также смена времени года приводит к тому, что органы человека также ритмично изменяют свою активность.

Включающими и выключающими факторами являются физические изменения внешней среды, например, изменение интенсивности светового потока, связанного с движением Солнца, а также изменение фаз Луны, сезонные изменения в природе, магнитные бури, солнечные ветры и другие космические факторы.

На Земле все живые существа подчиняются суточным ритмам. У человека есть внутренние часы, которые идут даже в отсутствии внешних сигналов. В нашей ДНК укоренилась связь с природными ритмами Земли. Эта связь очень важна для нас, так как она определяет не только когда мы просыпаемся, и когда пора отдохнуть, но это так же влияет на наше кровяное давление и температуру тела.

СОЛНЕЧНЫЙ СУТОЧНЫЙ (ЦИРКАДНЫЙ) РИТМ

Из суточных ритмов нашего организма наиболее нам знаком ритм бодрствования и сна. Вечером мы засыпаем, утром просыпаемся, и так 365 раз в году на протяжении всей жизни. Сон - это волнообразный ритмический процесс. Периоды наиболее легкого пробуждения повторяются через каждые 1,5 часа. Нормальный сон человека должен быть кратным этому времени и должен длиться 6, 7,5 или 9 часов. Наиболее полезно для организма вставать утром с восходом Солнца, а вредно - ложиться спать или даже подремать на заходе Солнца (встанете с чувством разбитости, а зачастую и с головной болью).

Ритмы человеческой активности и покоя связаны со сменой дня и ночи. Днем мы, как правило, бодрствуем, ночью – спим. Несколько раз в сутки наступает прилив и отлив физических сил. После фазы активности наступает фаза отдыха. Настроение человека так же зависимо от этих ритмов.

Человек настраивается на природные изменения, реагирует на них, словно чуткий камертон, проявляя это в переменах своей сердечной деятельности, работе почек, желез внутренней секреции, в изменении давления.

Существует целая наука, фиксирующая и изучающая эти изменения. Она называется хрональной биологией.

В последние годы в науке о биоритмах, хронобиологии, сделано многое, чтобы установить механизм возникновения суточных гормональных циклов. Ученые знают, что организм отсчитывает время с помощью циркадных ритмов, они обнаружили в головном мозге «циркадный центр» и в нем, так называемые, «часовые гены» биологических ритмов здоровья.

Суточный биоритм связан с вращением Земли вокруг своей оси и сменой дня и ночи. Он дает периоды спада и подъема физической и психической активности в течение суток.

Суточный (циркадный) биоритм является самым важным биологическим ритмом человека. В организме человека, устроенном как сложно организованная колебательная система, которая может давать резонансные ответы под влиянием внешних частотных воздействий, биологические активность органов по часам отмеряют секунды, минуты, часы и годы.

Они отвечают за адаптации вызванные сменой дня и ночи, сменой часовых поясов, сменой циклов времен года.

Циркадные часы заставляют нас подчиняться циклам дня и ночи, вызванным вращением Земли вокруг своей оси. Циклы образуют определенную воспроизводимую структуру нервного возбуждения от одного момента до другого.

Одной из причин суточного биоритма и является предохранение нервных клеток центральной нервной системы от истощения путем периодического сна, сопровождающего охранительным торможением.

Одним из наиболее распространенных внешних сигналов является свет. Мозг человека, следя за изменением света с помощью рецепторов, находящихся в сетчатке глазного яблока, воспринимающих световые лучи и перерабатывающих их энергию в нервное раздражение, посылает шишковидной железе (эпифизу), выделяющей мелатонин, называемый иногда гормоном сна, сигнал разрешающий или запрещающий его выделение. Благодаря этим часам мы спим ночью и бодрствуем днем.
Участие в реализации биоритмов принимает шишковидная железа, осуществляя связи с гипоталамусом и вилочковой железой. Например, суточная активность нейросекреторных клеток гипоталамуса управляет водно-солевым и жировым обменом, температурой тела, а также ритмическим функционированием желез внутренней секреции.

Температура тела регулярно повышается к вечеру и падает за несколько часов до утреннего пробуждения, по утрам секреция стрессового гормона кортизона в 10-20 раз выше, чем ночью.

Позывы к мочеиспусканию и работа кишечника обычно подавляются ночью и возобновляются утром. Исследования показали, что у людей, вынужденных работать по ночам, даже если они потребляют большое количество кофеина, суточные циклы сохраняются.

Смена часового пояса или посменный режим работы - ситуации исключительные, при которых меняется фаза внутренних циркадных часов по отношению к циклам день - ночь и сон - бодрствование.

Подобное может происходить и ежегодно при смене сезонов. Обычно большинство людей просыпается утром в одно и то же время круглый год. Как правило, этого требуют жизненные обстоятельства.

Термин «циркадианные» означает, что эти ритмы имеют период около суток (24 часов). Суточные ритмы заставляют нас чувствовать себя сонливым или бодрым в одно и то же время каждый день.

Некоторые люди страдают от расстройств сна, связанных с нарушениями суточных ритмов. При этом их естественное время сна накладывается на время, когда необходимо выполнять виды деятельности, характерные для состояния бодрствования, например, работать или учиться.

Помимо других факторов, «подвести» наши внутренние часы может яркий свет, например солнечный свет или искусственное освещение. Периоды сна и бодрствования у человека сменяются с циркадной периодичностью.

Одним из основных действий мелатонина является регуляция сна. Он принимает участие в создании циркадного ритма: он непосредственно воздействует на клетки и изменяет уровень секреции других гормонов и биологически активных веществ, концентрация которых зависит от времени суток.

Влияние светового цикла на ритм секреции мелатонина показано в наблюдении за слепыми. У большинства из них обнаружена ритмичная секреция гормона, но со свободно меняющимся периодом, отличающимся от суточного (25-часовой цикл по сравнению с 24-часовым суточным).

То есть у человека ритм секреции мелатонина имеет вид циркадианной мелатониновой волны, «свободно бегущей» в отсутствие смены циклов свет-темнота. Сдвиг ритма секреции мелатонина происходит и при перелёте через часовые пояса.

Роль эпифиза и эпифизарного мелатонина в суточной и сезонной ритмике, режиме сна-бодрствования на сегодняшний день представляется несомненной.

Мелатонин в биологическом процессе выполняет важную роль. Он вырабатывается шишковидной железой, в основном в ночное время, а при сильном свете задерживается (как у дневных, так и у ночных животных).

Мелатонин отвечает за передачу данных о продолжительности ночи и дня и тем самым обеспечивает информацией о временах года.

Сам мелатонин снотворным не является, он только «рекомендует» мозгу переходить в ночной режим. С другой стороны «внеплановое» изменение количества мелатонина в крови, может изменять ход наших «биологических часов». У здорового человека с постоянным режимом сна, график содержания мелатонина в крови похож от ночи к ночи при условии, что темный и светлый период суток наступают в одно и то же время.

У слепых людей «биологические часы» идут «по иннерции» – без корректировки, и график мелатонина в крови, смещаясь на несколько минут в сутки, плавно смещается то на ночь то на день.

У зрячего же человека, при воздействии на глаза яркого света ночью, выработка мелатонина резко снижается, а утром, наличие темноты перед пробуждением, «затягивает» мелатониновую фазу в сутках.

У слепых детей иногда развиваются нарушения сна из-за того, что в их мозг не поступает информация о свете и темноте. Прием искусственного мелатонина помогает лечению расстройства сна у слепых.

Многие слепые люди страдают бессоницей из-за того, что они не видят дневного света, от чего сбиваются их внутренние часы.

Таким образом, cинтез мелатонина связан с освещенностью: чем сильнее освещенность, тем меньше мелатонина образуется. Поэтому пик содержания мелатонина в крови наблюдается ночью, а минимум днем.

Длительное чрезмерное освещение приводит к сильно заниженному уровню мелатонина, что неблагоприятно для состояния организма. Помимо гуморальной (эндокринной) функции, мелатонин обладает функцией сильного терминального антиоксиданта, защищающего ДНК от повреждений. Терминальные антиоксиданты – антиоксиданты не способные восстанавливаться обратно из окисленной (активными радикалами кислорода) формы.

Интересно, что мелатонин является гормоном всевозможных таксономических групп от водорослей до млекопитающих, то есть является очень древним и важным гормоном.

Как отмечается в исследованиях многих ученых, биологические часы влияют на суточный ритм многих физиологических процессов.

Суточный (циркадный) ритм дает периоды спада и подъема физической и психической активности в течение суток. Суточные ритмы активности человеческого организма складываются под воздействием процессов, протекающих на поверхности Земли, а Луна, в свою очередь, дает силу этим процессам, наполняя работающий орган питательными веществами (посредством крови) и магнитоэлектрической энергией, активизирующей биохимические процессы органа.

У каждого человека есть свой хронотип .
У каждого из нас, кроме того, есть индивидуальные внутренние часы, с которыми не мешает сверять свои планы, чтобы правильно использовать энергетический потенциал организма. Они подскажут, что лучше делать сейчас, а что отложить на потом

. Хронотип
утренний («жаворонки»),
вечерний («совы»)
дневной («голуби»).

У «сов» максимум суточных биоритмов активности и покоя сдвинут на более поздние, а у «жаворонков» – на более ранние часы.
У «голубей» пик активности приходится примерно на середину дневного периода.
Примерно 20 % людей имеет хорошо выраженный утренний или вечерний тип активности.

Хронотип передается по наследству, как, например, цвет глаз или цвет волос.
С ним связаны определенные черты характера, показатели здоровья и адаптационных возможностей.

Например, «совы» в большей степени, чем «жаворонки», подвержены сердечно-сосудистым заболеваниям, однако их биоритмы более пластичны, и они лучше приспосабливаются к новым режимам жизнедеятельности.

У «жаворонков» многие показатели здоровья лучше, чем у «сов», но они более консервативны и с трудом переносят изменения привычного режима жизни.

Современный человек то и дело нарушает ритмы свей жизни, неправильно и насильно обращаясь с периодами сна и бодрствования, активного и пассивного поведения, насыщения и голода.
Озабоченный выживанием и добыванием, он забывает о естественных потребностях своего организма и превращает его в машину, вынужденную работать на износ и окруженную опасными, разрушительными энергоинформационными воздействиями.

Так, например, происходит с человеческим сном, который является необходимым условием нормального и безопасного существования человека.

Ученые считают, что сон охраняет и восстанавливает нарушенное в течение дня биополе человека, делает его более защищенным и способным противостоять сложностям жизни.
Сон нам необходим.
Но давайте посмотрим, как небрежно мы к нему относимся.
Мы постоянно нарушаем режим.
Кто-то работает в ночную смену, а кто-то устраивает себе ночную смену у телеэкрана или монитора, а утром чувствует себя разбитым и не способным к продуктивной деятельности.

Нарушение режима сна очень часто приводит к бессоннице, которая кажется безобидной только на первый взгляд.
На вторые сутки без сна человек запинается на каждом слове, спотыкается на ровном месте, становится некритичным к себе; ему не под силу задачи, требующие повышенного внимания, постепенно он становится суетлив и беспокоен.

На четвертые сутки бессонницы возникают галлюцинации, на пятые – человек не способен решить простейшую задачу, на седьмые – ощущает себя жертвой заговора, воля его полностью подавлена, внушаемость необычайно высока.

Одним словом, депривация (от англ. deprivation – лишение) сна является источником сильнейшего стресса со всеми его психофизиологическими и биохимическими сдвигами и, в конце концов, приводит к нервному истощению и смерти.

В развитых странах 10% всех лекарств, выписанных врачами, приходится на снотворные.
Если учесть склонность наших соотечественников к самолечению и использованию таблеток по принципу «помогло подруге – поможет и мне», то эта цифра, безусловно, будет еще выше.
Но снотворные – это химия, обладающая побочными эффектами и ничего общего не имеющая с естественными жизненными процессами расслабления и восстановления.

То же самое мы наблюдаем с режимом питания. Не завтракая, мы обрекаем организм в течении дня работать в стрессовом режиме.
Перекусывая на ходу, не даем ему возможность переварить продукты, необходимые для нашей жизнедеятельности.

Многие девушки, следящие за фигурой, категорически не едят после 18.00.А потом не могут уснуть на голодный желудок, который вынужден перерабатывать собственные стенки.

С точки зрения хронобиологов, последний прием пищи должен быть примерно за 1,5 часа до сна.
Это может быть стакан кефира, теплого молока с медом (способствует быстрому засыпанию), немного овощей или фруктов.
И, конечно, следует избегать продуктов, обладающих тонизирующим действием на организм: чая, кофе, напитков, содержащих .

А вот в бананах содержится , который является медиатором процессов торможения в головном мозге.
Так что, 1-2 этих вкусных и питательных фрукта на ночь не повредят никому.

Изменения ритма
Нельзя подходить к ритмам жизни с жестких позиций.
Они меняются в течение жизни человека, когда с развитием его мозговых синхронизаторов варьируется потребность в сне, периодах активности и расслабления.
Это происходит, например, в период полового созревания у подростков, у беременных и кормящих матерей, в связи с переездом в другие часовые и климатические пояса, в пожилом и старческом возрасте в связи с изменением гормональных биоритмов.
Снижение адаптационных возможностей с возрастом обуслов¬лено уменьшением пластичности биоритмов организма.
Кроме того, на ритмы жизни влияют сезонные изменения и природные катаклизмы.

Задача человека состоит в том, чтобы прислушиваться к потребностям своего организма, не насиловать его и не давать ему слишком часто расслабляться.

Быть ближе к природе, активно бодрствовать и полноценно отдыхать, правильно питаться и не перегибать палку, соблюдая эмоциональный баланс – нехитрые и всем известные способы чувствовать себя здоровым и счастливым.
Быть в тонусе – значит жить в ритме своей планеты, вливаясь в неизменный процесс её ежесекундных метаморфоз.

ЛУННЫЕ РИТМЫ
Луна, вращаясь вокруг Земли, влияет на Землю на физическом плане – приливы и отливы водных ресурсов Земли следуют в ее ритме. Естественно, что Луна так же влияет и на человека, который в основном состоит из воды. Лунные ритмы воздействует на психику человека и как следствие на его поведение.

Так в новолуние настроение меняется от подавленности до спокойствия, в полнолуние – от эмоционального подъема до тревожности, раздражительности и агрессивности, в зависимости от индивидуальных особенностей личности.

Луна является управителем двухчасового ритма последовательной активности 12-ти органов человека (суточный режим работы каждого из внутренних органов), что было подмечено китайской народной медициной.

Причем активизация органов подчиняется внутренним биологическим часам. При энергетическом возбуждении организма происходит взаимодействие главных органов, подстройка их друг под друга, и под изменения окружающей среды. Полный цикл энергетического возбуждения органов завершается примерно за 24 часа.

Каждый орган нашего тела имеет свой биоритм. Он проходит в течение суток одну высшую фазу максимальной активности органов, в которой он 2 часа подряд хорошо и эффективно работает (в это время он как бы является ведущим, т. е. несет на себе большую нагрузку), а также двух часовую фазу минимальной активности.

В фазе максимальной активности орган человека лучше поддается лечебному воздействию . В организме запускается целый каскад дополнительных биохимических реакций, комплексно использующих вещества натуральных препаратов и лекарств.

Время максимальной активности органов человека по часам в суточном биоритме:

С 1 часа ночи до 3 часов - активна печень,
с 3 до 5 часов - легкие,
с 5 до 7 часов - толстый кишечник,
с 7 до 9 часов - желудок,
с 9 до 11 - селезенка (поджелудочная железа),
с 11 до 13 часов - сердце,
с 13 до 15 часов - тонкий кишечник,
с 15 до 17 часов - мочевой пузырь,
с 17 до 19 часов - почки,
с 19 до 21 часа - перикард (система кровообращения),
с 21 до 23 часов - общая концентрация энергии (три огня или обогревателя),
с 23 часов до 1 часа - желчный пузырь.

Эти часы наиболее благоприятны для их лечения, очищения и восстановления. Например, функция сердца сильна с 11 до 13 часов - в это время необходимо давать наибольшую нагрузку, в том числе и в виде физических упражнений;

Время минимальной активности органов человека в по часам суточном биоритме:
с 1 часа ночи до 3 часов _ тонкий кишечник,
с 3 до 5 часов - мочевой пузырь,
с 5 до 7 часов - почки,
с 7 до 9 часов - перикард,
с 9 до 11 - тройной обогреватель,
с 11 до 13 часов - желчный пузырь,
с 13 до 15 часов - печень,
с 15 до 17 часов-легкие,
с 17 до 19 часов - толстый кишечник,
с 19 до 21 часа - желудок,
с 21 до 23 часов - селезенка и поджелудочная железа,
с 23 часов до 1 часа - сердце.

Примечание: (активность органов по часам)

1. «Три обогревателя». Анатомического представительства этот орган не имеет, но функциональная его роль велика. Верхняя его часть включает легкие и сердце, ведает дыханием, системой кровообращения, контроль за порами кожи. Средняя часть - селезенка и желудок контролирует переваривание пищи. Нижняя часть - почки, печень, мочевой пузырь, тонкая и толстая кишки осуществляют фильтрацию, выводят из организма избыток воды и ненужные вещества.

2. Перикард является функциональной системой, регулирующей кровообращение (вместе с сердцем), дыхание и половые функции. В его задачу входит и защита сердца от угрозы извне.

Восточные целители, опираясь на огромный опыт, доказали, что большое значение имеет при приеме лекарственных средств не только доза, но и время их приема.Поэтому, зная время высшей активности органов, можно значительно эффективнее проводить процедуры, направленные на укрепление здоровья, введение целебных веществ или вымывание ядов.

Самое благоприятное влияние на эти органы и части тела будут оказывать лечебные и оздоровительные процедуры, если при этом мы будем учитывать еще и ежедневное положение Луны.

Так, например, с 7 до 9 часов самое подходящее время для завтрака (желудок максимально активен),

с 11 до 13 часов - для самого большого приема пищи (когда активно сердце).

С 17 до 19 часов благоприятное время для ужина, лечения почек и спины (время активности почек).

С 19 до 21 часа на небе появляется Луна, в это время эффективнее всего лечиться от импотенции и фригидности.

Период с 21 до 23 часов исключительно хорош для того, чтобы помочь с кожным покровам и волосам.

Похожие статьи

© 2024 dvezhizni.ru. Медицинский портал.