Особенности происхождения и строения луны. Загадки в строении луны Особенности строения луны

Фото: Луна – естественный спутник Земли и неповторимый инопланетный мир, в котором побывало человечество.

Луна

Характеристики Луны

Луна вращается вокруг Земли по орбите, большая полуось которой равна 383000 км (эллиптичность 0,055). Плоскость лунной орбиты наклонена к плоскости эклиптики под углом 5°09. Период вращения равен 27 суток 7 часов 43 минуты. Это сидерический или звездный период. Период синодический – период смены лунных фаз – равен 29 суток 12 часов 44 минуты. Период вращения Луны вокруг своей оси равен сидерическому периоду. Поскольку время одного оборота Луны вокруг Земли точно равно времени одного оборота ее вокруг оси, Луна всегда обращена к Земле одной и той же стороной. Луна – самый заметный объект на небе после Солнца . Максимальная звездная величина равна – 12,7m.

Масса спутника Земли составляет 7,3476*1022 кг (в 81,3 раз меньше массы Земли), средняя плотность p = 3,35 г/см3, экваториальный радиус – 1 737 км. Стягивание с полюсов почти не имеется. Ускорение свободного падения на поверхности составляет g = 1,63 м/с2. Тяготение Луны не смогло удержать ее атмосферу, если она когда-то и была.

Внутреннее строение

Плотность Луны сравнима с плотностью земной мантии. Поэтому у Луны или нет, или очень малозначимое железное ядро . Внутреннее строение Луны изучено по сейсмическим данным, переданным на Землю устройствами космических экспедиций «Аполлон». Толщина коры Луны 60–100 км.

Фото: Луна - внутреннее строение

Толщина верхней мантии 400 км. В ней сейсмические скорости находятся в зависимости от глубины и сокращаются в связи от расстояния. Толщина средней мантии около 600 км. В средней мантии сейсмические скорости неизменны. Нижняя мантия расположена ниже 1100 км. Ядро Луны, начинающееся на глубине 1500 км, вероятно, жидкое. Оно практически не включает в себя железо. В следствии этого Луна обладает весьма слабым магнитным полем, не превышающее одной десятитысячной части земного магнитного поля. Зарегистрированы местные магнитные аномалии.

Атмосфера

Атмосферы на Луне фактически нет. Это объясняет внезапные перепады температур в несколько сотен градусов. В дневное время температура на поверхности достигает 130 C, а ночью она снижается до –170 C. В то же время на глубине 1 м температура почти всегда неизменная. Небо над Луной всегда черное, поскольку для образования голубого цвета неба необходим воздух , который там отсутствует. Нет там и погоды, не дуют и ветры. Кроме того, на Луне царит полная тишина .

Фото: поверхность Луны и ее атмосфера

Видимая часть

С Земли прослеживается только видимая часть Луны . Но это не 50% поверхности, а малость больше. Луна обращается вокруг Земли по эллипсу , около перигея Луна передвигается быстрее, а около апогея – медленнее. Но вокруг оси Луна вращается равномерно. Вследствие этого образуется колебание по долготе. Вполне вероятная максимальная величина ее составляет 7°54. Вследствие либрации мы имеем шанс наблюдать с Земли кроме видимой стороны Луны еще и прилегающие к ней узкие полосы территории оборотной ее стороны. В общей сложности с Земли можно увидеть 59% лунной поверхности.

Луна в ранние времена

Есть предположение, что в ранние времена своей истории Луна обращалась вокруг оси быстрее и, стало быть, поворачивалась к Земле различными частями своей поверхности. Но из-за близости массивной Земли в твердом теле Луны зарождались внушительные приливные волны. Процесс торможения Луны длился до тех пор, пока она не оказалась неизменно повернутой к нам лишь одной стороной.

Геология ( строение) Луны

Пепельный ландшафт простирается на сколько хватает глаз. Пустынная равнина окру-жена холмами со сглаженными очертаниями. Полузасыпанные глыбы беспорядочно наг-ромождены вокруг. Грунт мягкий, следы на нем остаются, как на мокром песке. Этот ландшафт, ограниченный аномально близким из-за малого радиуса планеты горизонтом, не да-ет никаких ориентиров для оценки расстояния. Полное отсутствие атмосферы создает иллю-зию необычайной близости предметов.

Бархатно-черное небо сияет миллиардами немерцающих, ярких звезд. Солнце в дневное время соседствует с ними. Оно выглядит как четко очерченный слепящий бело-желтый круг без при-вычных лучиков. Тени от неровностей рельефа здесь очень глубоки и черны, поскольку нет рас-сеянного света.

И совсем непривычно и фантастично выглядит большой незаходящий голубой шар, хрупкий и прекрасный — живая планета, украшающая небосклон этого абсолютно мертвого мира.

Луна — тринадцатое по величине тело Солнечной системы — вращается вокруг Земли по слабо вытя-нутой эллиптической орбите, удаляясь от нее на макси-мальное расстояние в апогее на 405 тыс. км и приближаясь в перигее до 363 тыс. км. Средний диаметр Луны около 3486 км, что приблизительно в 3,6 раза меньше диаметра нашей планеты, а масса составляет 1/81 от ее массы. Луну отличает невысокая, по сравнению с планетами земной группы, плотность — 3,34 г/см3 (для сравнения, плотность Земли — 5,52г/см3). Период обращения Луны вокруг своей оси строго соответствует периоду обращения вокруг Земли (27 суток и 8 часов), и поэтому она повернута к нам всегда одной стороной. Только часть противоположной стороны (18%) бывает видна из-за либрации Луны. Ось ее враще-ния наклонена на 5,1° к плоскости орбиты. Сила тяжести на поверхности Луны в 6 раз слабее, чем на Земле. Темпе-ратура здесь колеблется от -160° С в лунную полночь до + 120° С в лунный полдень. Такие резкие перепады приво-дят к быстрому разрушению лунных пород. Эти процессы объясняют очень пологие, сглаженные формы лунного ре-льефа.

Не только Земля оказывает гравитационное влияние на Луну, но и Луна заметно воздействует своим гравитационным полем на Землю. Деформа-ции земной коры вместе с перемеще-ниями масс воды во время приливов и отливов вызывают внутреннее тре-ние, тормозящее вращение нашей планеты. Замедление вращения Зем-ли доказано изучением линий роста палеозойских кораллов. Согласно этим данным, в начале палеозойской эры (540 млн. лет назад), земные сут-ки равнялись 22 часам, а это значит, что миллиарды лет назад, в самый ранний период истории Земли, они могли составлять всего 4 часа. Сейчас вращение Земли продолжает замед-ляться, и Луна удаляется от нее со скоростью 3 см в год. В палеозойскую эру, когда животные выбрались на су-шу, они могли видеть Луну ближе, чем видим ее мы, и гораздо больших размеров. Расчеты показывают, что примерно через 5 млрд. лет вращение Земли затормозится настолько, что она будет совершать за год всего 9 обо-ротов вокруг своей оси; к тому момен-ту и удалившаяся Луна будет обхо-дить Землю 9 раз за год. С этого вре-мени и уже навсегда с Луны будет видна только одна половина земного шара. Однако ученые предполагают, что через 4,5 млрд. лет наше Солнце, скинув оболочку, превратится в бе-лый карлик, и это катастрофически скажется на судьбе планетной пары Земля-Луна.

Эволюция и формы рельефа Луны

Характер поверхности Луны и сос-тав ее верхних оболочек формировался в течение долгой истории. Около 4,6 млрд. лет назад в окрестностях молодо-го Солнца происходили важные собы-тия — заканчивался процесс рождения планет и их спутников. Луна, как и Земля, представляла собой пылающий шар расплавленных горных пород, в который сыпался град метеоритов. В это время на Луне извергались вулканы и совершались катастрофические планетотрясения. Со временем внешняя расплавленная оболочка Луны, осты-вая, затвердевала. Период магматичес-кой "бурной молодости" Луны длился не более 0,5 млрд. лет. Это была эпоха формирования.

В ходе остывания внешней корки Луны и бомбардировки ее метеоритами 4,4 — 4,1 млрд. лет назад образовался типичный лунный кратерный рельеф. Этот период, длившийся примерно 0,5 млрд. лет, называют эпохой бомбарди-ровки. По мере "вычерпывания" кос-мического "сора" из околоземного спутникового роя, частота падения обломков на Луну уменьшалась. Но имен-но напоследок (4,1-3,9 млрд. лет назад) произошли катаклизмы, приведшие к образованию на поверхности гигант-ских впадин, которые называют "боль-шими ударными бассейнами" или "лунными морями".

Заключительной стадией активной внутренней жизни Луны явился гло-бальный базальтовый вулканизм. Кора на видимом полушарии, возможно, из-за приливного действия Земли, вдвое тоньше (60 км), чем на обратной сторо-не. Поэтому извержение лав легче про-ходило на видимой стороне. Базальты, поднимаясь из лунных недр, заполни-ли "большие ударные бассейны", обра-зовав гигантские равнины, покрытые застывшей лавой. Это время называют эпохой лавовых морей. Установлено, что возраст лунных базальтов состав-ляет 4-3 млрд. лет, т.е. активная текто-ническая жизнь планеты закончилась 3 млрд. лет назад.

С тех пор на Луне воцарилось отно-сительное спокойствие. Но падаю-щие метеоры, температурное вывет-ривание, солнечное и космическое излучения продолжают разрушать ее поверхность. В результате Луна вся покрылась слоем пылеватых частиц, толщиной до 10 м. Это самый дли-тельный период геологической исто-рии Луны, продолжающийся и сегод-ня. Он условно назван эпохой лунной пыли.

Еще на заре изучения Луны были приняты термины для обозначения различных областей на ее поверхнос-ти. Это лунные "моря" и лунные "кон-тиненты" или "материки". Материки (83% площади лунного шара) сложе-ны светлыми породами типа анортози-тов, они отличаются наличием значи-тельных неровностей и множеством кратеров. Моря — относительно ров-ные области, более темные из-за пок-рывающих их застывших потоков ба-зальтов, с меньшим количеством кра-теров.

На лунной поверхности встречаются кратеры диаметром от сотен километ-ров до миллиметров. Возраст боль-шинства крупных кратеров оценивает-ся в 1-3 млрд. лет. Они, как правило, ударного происхождения. У самых мо-лодых кратеров, например, Тихо, Ко-перник, поперечником в десятки кило-метров, при отвесно падающих лучах Солнца (в полнолуние) можно видеть радиально расходящиеся светлые по-лосы, простирающиеся на сотни, а иногда и тысячи километров. Полосы сложены светлыми обломками анорто-зитов (материковых пород), разлетев-шимися во все стороны при ударах ме-теоритов. Некоторые кратеры имеют вулканическое происхождение (кратер Варгентин, до краев заполненный ла-вой). Кроме ударных и вулканических структур, на Луне имеются трещины и разломы, хорошо различимые на фо-тографиях. Это, например, знаменитая Прямая стена в Море Облаков — 240-метровый уступ, протянувшийся на 125 км. Концентрация разломов отме-чается в зонах сочленения континен-тов и морей.

В середине XVII в. польский астро-ном Ян Гевелий предложил называть горы на Луне теми же именами, что и на Земле. Вокруг Моря Дождей распо-ложены Альпы, Кавказ, Апеннины, Карпаты. Море Нектара окружают Ал-тай и Пиренеи. Наиболее внушитель-ная горная цепь — Апеннины, длиной почти 600 км (максимальная высота 5638м). Самые высокие — Горы Лей-бница — лежат в районе южного полю-са. Высота их отдельных пиков, по пос-ледним данным, несколько превышает 9000 м.

Из чего состоит Луна

Вопрос об элементном, минерало-гическом и петрографическом составе лунной поверхности волновал ученых с тех пор, как они начали наблюдать и изучать это небесное тело. Но дать точный ответ на него удалось только при детальном исследовании образ-цов лунных пород и грунта, достав-ленных американскими и советскими космическимиаппаратами.Сейчас для исследований имеется 385 кг ве-щества из разных областей видимой стороны Луны. Часть его была тща-тельно изучена всеми возможными способами в лабораторных условиях. А остаток, запакованный в гермети-ческие контейнеры, хранится в ожи-дании более совершенных методов исследования.

Основные химические элементы, обнаруженные в лунных породах — это кислород, кремний, железо, ти-тан, магний, кальций и алюминий. В лунных базальтах найдены благород-ные металлы — серебро и золото, но их содержание значительно меньше, чем в земных. В целом, лунная мине-ралогия оказалась довольно бедной.

На Земле существует несколько ты-сяч минералов, а на Луне их пока отк-рыто не более сотни. Впрочем, это легко объяснить: на Луне нет жидкой воды и атмосферы, поэтому условия формирования минералов менее раз-нообразны.

В лунном грунте не найдено окаменелостей или остатков органики. В нем отсутствуют даже небиологические ор-ганические соединения.

Какими же породами представлена лунная поверхность? Их делят на нес-колько типов.

Базальты — вулканические тяже-лые, темные, микрозернистые, плот-ные или пористые породы, образован-ные при застывании лавы.

Вулканические стекла — мелкие оранжевые и изумрудно-зеленые шарики, придающие цветовые от-тенки лунному грунту.

Анортозиты — относительно легкие светлые крис-таллические породы, похожие на земные, которые формируют лунные материки. Именно из-за них мате-риковые области Луны выглядят более светлыми, чем морские.

Брекчии — сложные породы, формирующиеся из всех других типов лунных пород и грунта при паде-нии метеоритов. Обломки пород цементируются стекловидной массой, выплавившейся при ударе из лунных пород и вещества метеорита.

Лунный грунт или реголит — пылевато-песчаный порошок со специфичес-ким запахом гари, которым покрыта вся поверхность Луны. Он обладает стран-ным свойством: при бурении поверхностного слоя, состоящего из реголита, мяг-кий порошок сопротивляется углублению буровой трубки, и в то же время, не держит ее в вертикальном положении.

Получены интересные данные, свидетельствующие о наличие пыли в около-лунном пространстве. Именно она вызывает свечение лунного горизонта при захо-де Солнца на Луне. Свечения были зарегистрированы американскими аппаратами Surveyor, а также при визуальных наблюдениях астронавтами с окололунной ор-биты во время полетов кораблей Apollo. Наиболее вероятные размеры частиц пы-ли оцениваются в 0,1 мкм.

Пока остается открытым вопрос о присутствии воды на Луне. Американская станция Clementine в 1994 г. и космический аппарат Lunar Prospector в 1998 г. засвидетельствовали небольшую (до 1%) концентрацию мелких кристаллов льда в лунном реголите в районе южного полюса. Источником воды предположительно могли быть ядра упавших на Луну комет или недра самой Луны. Однако радиоас-трономические исследования лунных полюсов в 2003 г. показали отсутствие там следов льда.

Внутреннее строение Луны

Образцы лунного грунта добыты с глубины до 2,5 м. А что находится глубже? Ответ на этот вопрос дали геофизические методы исследования. Американские астронавты установи-ли на лунной поверхности сейсмометры, регистрирующие колебания почвы. Их источником должны были служить удары метеоритов, лунотрясения, упавшие отработанные посадочные лунные модули кораблей Apollo и последние сту-пени ракет-носителей Saturn, которые направлялись в зара-нее выбранные точки.

Однако энергии этих ударов хватило для изучения стро-ения коры и верхней мантии до глубин 150-200 км. Для "просвечивания" всей толщи необходим был более мощный удар. И природа преподнесла ученым подарок в виде паде-ния двух крупных метеоритов на обратной стороне нашего спутника. "Просветив" Луну насквозь, сейсмические вол-ны качнули сейсмометры на всех четырех станциях сети Apollo и принесли феноменальную новость — у Луны су-ществует ядро.

Результаты изучения сейсмограмм позволяют сделать вывод, что лунные недра делятся на четыре условные зоны: кора, образованная породами анортозитового состава, мощностью 60 км на видимой стороне и более 100 км на об-ратной; верхняя мантия (литосфера), мощностью около 800 км, где фиксируются глубокофокусные лунотрясения; нижняя мантия, находящаяся в частично расплавленном состоянии, с температурой до 1500° С; и лунное ядро, рас-положенное глубже 1400-1500 км.

По сравнению с Землей, Луна геологически малоактив-на, но слабые тектонические лунотрясения все же удается проследить.

Лунотрясения приливного характера, наблюдаемые во время прохождения Луной апогея и перигея своей орбиты, связаны с гравитационным воздействием Земли. Их перио-дичность оставляет 13,6 земных суток.

Как образовалась Луна?

Космическая эра принесла много новых данных о внутреннем строении Луны. На Землю было доставлено сотни килограммов лунного грунта. Но можем ли мы с полной уверенностью ответить на вопрос, как образова-лась Луна?

Версий несколько. Это: 1. гипотеза "рождения" Луны из газово-пылевого протопланетного облака одновременно с Землей; 2. гипотеза захвата Землей Луны, образовавшейся в удаленной части Солнечной системы из протопланетного вещества, бедного железом; 3. гипотеза отрыва части мантийного вещества от разогретой и быстровращающейся Земли в ранний период ее формирования. Все они имеют свои недостатки.

Большинством планетологов се-годня принята ги-потеза "большого взрыва", согласно которой Луна об-разовалась в ре-зультате столкно-вения юной Земли с планетой, названной Тея, размерами близкой к Марсу. Оно могло произойти приблизительно через 50 млн. лет после рождения Солнечной системы. Масса Земли тогда составляла около 90% нынешней. Часть земного материа-ла и обломки столкнувшегося тела образовали дисковидное облако, из которого и сформировалась Луна. Удар зат-ронул лишь внешнюю мантийную часть Земли. Выбитый материал содержал мало тяжелых железных компонентов. Поэтому сформировавшееся новое тело оказалось относи-тельно легким.

Общность происхождения подтверждают полученные не-давно данные об изотопном составе Земли и Луны. Ученые даже не ожидали, что состав изотопов кислорода на Луне и Земле окажется практически одинаковым.

В пользу гипотезы свидетельствуют и данные объемно-го сейсмического зондирования Земли, которое показало существование тихоокеанской сейсмической аномалии в мантии, прослеживающейся на всех глубинных уров-нях, вплоть до ядра. Она может являться той "незажива-ющей раной", которая осталась после катастрофическо-го удара.

Луна хранит еще множество загадок. Раскрыв их, мы приблизились бы и к разгадкам галактических тайн. Ведь бесплодная лунная поверхность запечатлела следы самых древних событий, происходивших в Солнечной системе. Но для продолжения исследований человечеству необходимо вернуться в этот мир. Увы, спустя 30 лет после полета "Apollo 1 7", проекты построения на Луне научной базы по-ка не финансируются ни одним космическим агентством.

Марина и Сергей Крочак

Плотность лунных пород составляет в среднем 3,343 г/см3, что заметно уступает средней плотности для Земли (5,518 г/см3). Это различие связано главным образом с тем, что уплотнение вещества с глубиной проявляется на Земле значительно заметнее, чем на Луне. Имеются и различия в минералогическом составе лунных и земных пород: содержание оксидов железа в лунных базальтах на 25%, а титана - на 13% выше, чем в земных. "Морские" базальты на Луне отличаются повышенным содержанием оксидов алюминия и кальция и относительно более высокой плотностью, что связывают с их глубинным происхождением.

Для исследования строения Луны использовались сейсмические методы. В настоящее время картина этого строения разработана довольно детально. Принято считать, что недра Луны можно разделить на пять слоев.

Поверхностный слой - лунная кора (ее толщина меняется от 60 км на видимой с Земли половине Луны до 100 км - на невидимой) - имеет состав, близкий к составу "материков". Под корой располагается верхняя мантия - слой толщиной около 250 км. Еще глубже - средняя мантия толщиной порядка 500 км; полагают, что именно в этом слое в результате частичного выплавления формировались "морские" базальты. На глубинах порядка 600-800 км располагаются глубокофокусные лунные сейсмические очаги. Нужно, однако, отметить, что естественная сейсмическая активность на Луне невелика.

На глубине около 800 км кончается литосфера (твердая оболочка) и начинается лунная астеносфера - расплавленный слой, в котором, как и в любой жидкости, могут распространяться только продольные сейсмические волны. Температура верхней части астеносферы порядка 1200 К.

На глубине 1380-1570 км происходит резкое изменение скорости продольных волн - здесь проходит граница (довольно размытая) пятой зоны - ядра Луны. Предположительно, это относительно небольшое ядро (на его долю приходится не более 1% массы Луны) состоит из расплавленного сульфида железа.

Поверхностный довольно рыхлый слой Луны состоит из пород, раздробленных постоянным потоком падающих на нее твердых тел - от микрометеоритов и пыли до крупных частиц - многотонных метеоритов и астероидов.

Над поверхностью Луны газовая атмосфера как таковая отсутствует, так как не может удерживаться Луной вследствие ее малой массы. В результате даже легчайшие атомы при средних тепловых скоростях способны преодолевать притяжение Луны. Поэтому плотность газа над Луной по крайней мере на 12 порядков меньше плотности приземной атмосферы (хотя и заметно выше плотности межзвездного газа).

Самый верхний слой представлен корой, толщина которой, определенная только в районах котловин, составляет 60 км. Весьма вероятно, что на обширных материковых площадях обратной стороны Луны кора приблизительно в 1,5 раза мощнее. Кора сложена изверженными кристаллическими горными породами - базальтами. Однако по своему минералогическому составу базальты материковых и морских районов имеют заметные отличия. В то время как наиболее древние материковые районы Луны преимущественно образованы светлой горной породой - анортозитами (почти целиком состоящими из среднего и основного плагиоклаза, с небольшими примесями пироксена, оливина, магнетита, титаномагнетита и др.), кристаллические породы лунных морей, подобно земным базальтам, сложены в основном плагиоклазами и моноклинными пироксенами (авгитами).

Под корой расположена мантия, в которой, подобно земной, можно выделить верхнюю, среднюю и нижнюю. Толщина верхней мантии около 250 км, а средней примерно 500 км, и ее граница с нижней мантией расположена на глубине около 1000 км. До этого уровня скорости поперечных волн почти постоянны, и это означает, что вещество недр находится в твердом состоянии, представляя собой мощную и относительно холодную литосферу, в которой долго не затухают сейсмические колебания. Состав верхней мантии предположительно оливинпироксеновый, а на большей глубине присутствуют шницель и встречающийся в ультраосновных щелочных породах минерал мелилит.

На границе с нижней мантией температуры приближаются к температурам плавления, отсюда начинается сильное поглощение сейсмических волн. Эта область представляет собой лунную астеносферу. В самом центре, по-видимому, находится небольшое жидкое ядро радиусом менее 350 километров, через которое не проходят поперечные волны. Ядро может быть железо-сульфидным либо железным; в последнем случае оно должно быть меньше, что лучше согласуется с оценками распределения плотности по глубине. Его масса, вероятно, не превышает 2% от массы всей Луны. Температура в ядре зависит от его состава и, видимо, заключена в пределах 1300 - 1900 К.

Особенности "строения" - поверхность
Как образовались лунные кратеры? Этот вопрос стал причиной длительной дискуссии, с легкой руки испанского астронома Антонио Палюзи - Бореля получившей название "столетней войны". Речь идет о борьбе между сторонниками двух гипотез происхождения лунных кратеров: вулканической и метеоритной.
Согласно вулканической гипотезе, которую выдвинул в 80-х гг. XVIII в. немецкий астроном Иоганн Шретер, кратеры возникли в результате грандиозных извержений на поверхности Луны. В 1824 г. его соотечественник Франц фон Груйтуйзен предложил метеоритную теорию, объяснявшую образование кратеров падением метеоритов. По его мнению, при таких ударах происходит продавливание лунной поверхности.
Лишь через 113 лет, в 1937 г., российский студент Кирилл Петрович Станюкович (будущий доктор наук и профессор) доказал, что при ударах метеоритов с космическими скоростями происходит взрыв, в результате которого испаряется не только метеорит, но и часть пород в месте удара. Взрывная теория Станюковича разрабатывалась в 1947-1960 гг. им самим, а потом другими исследователями.
Полеты к Луне начиная с 1964 г. американских космических аппаратов серии "Рейнджер", открытие кратеров на Марсе и Меркурии, а затем на спутниках планет и астероидах подвели окончательный итог в этой "столетней войне", продолжавшейся не 100 лет, а гораздо дольше. Метеритная теория теперь является общепринятой.
В 1811 г. французский астроном Франсуа Араго открыл поляризацию света, отражаемого Луной. Это означало, что лунная поверхность должна быть покрыта слоем тонко раздробленного грунта. В морях поляризация была сильнее, чем на материках.
В 1918 г. российский ученый Николай Павлович Барабашов, изучая зависимость яркости лунных образований от угла падения солнечных лучей, обнаружил странное обстоятельство. Каждый участок лунной поверхности достигает максимальной яркости не тогда, когда Солнце стоит над ним в зените, как следовало ожидать, а в полнолуние, когда отраженный луч идет навстречу падающему солнечному лучу.
Не сразу астрономы разобрались в причинах подобного явления. Ясные представления о природе лунной поверхности сформировались только в середине XX в. В 50-е гг. было установлено, что лунный грунт действительно мелко раздроблен (очевидно ударами небольших метеоритов), а такое вещество, как показали теоретические исследования и специальные эксперименты, отражает больше всего света в том направлении, откуда приходит освещающий луч.
В 1959 г. российская исследовательница Надежда Николаевна Сытинская предложила метеорно-шлаковую теорию формирования лунного грунта. Согласно этой теории, тепло, передаваемое при ударе метеорита наружному покрову - реголиту Луны, расходуется не только на его расплавление и испарение, но и на образование шлаков, которые проявляют себя в цветовых особенностях поверхности Луны.
Метеорно-шлаковой теории некоторое время противостояла пылевая гипотеза американского астронома Томаса Голда. Он считал, что Луна покрыта толстым слоем пыли, в котором могут утонуть опускающиеся на ее поверхность космические аппараты и сами астронавты. Мягкая посадка на Луну советской автоматической межпланетной станции "Луна-9" 3 февраля 1966 г. полностью опровергла эту точку зрения. В справедливости метеорно-шлаковой теории смогли убедиться американские астронавты Нил Армстронг и Эдвин Олдрин, впервые ступившие на лунную поверхность 21 июля 1969г.
Еще в XIX в. была измерена температура лунной поверхности, прослежено ее изменение в течение лунных суток, а также во время затмений, когда Луна погружается в тень Земли и лишается при этом солнечного света и тепла. Из-за отсутствия атмосферы в дневные часы (а это 14,7 земных суток) под действием полящих солнечных лучей нагревается до 120-130°С. Ночью же лунное тепло беспрепятственно уходит в мировое пространство и температура падает до -150°С. Нечто подобное наблюдается и во время лунных затмений.

Внутреннее строение Луны
Плотность Луны равна 3340 кг/м 3 - как у земной мантии. Это значит, что наш спутник или не имеет плотного железного ядра, или оно очень маленькое. Более детальные исследования получены в результате сейсмических экспериментов.
Сейсмические исследования Луны начались с курьеза. В самом конце первой экспедиции человека на Луну астронавты Нейл Армстронг и Эдвин Олдрин, удалившись на 20 м к югу от лунного корабля, установили сейсмометр - один из двух научных приборов, которые они оставляли на Луну (вторым был кварцевый отражатель для лазерной локации с Земли). Астронавтам следовало очень тщательно установить этот прибор, сориентировав его по сторонам света и по вертикали, поскольку потом уже никто не смог бы подойти к нему, чтобы исправить возможную неполадку. Наблюдения с помощью этого сейсмометра должны были показать, есть ли на Луне современная тектоническая активность, или же это геологически мертвое небесное тело. Как только сейсмометр был установлен, его сразу же включили по команде из Центра управления полетом на Земле. Присутствовавшие в зале Центра управления в предместье техасского города Хьюстона с удивлением увидели, что прибор сразу же начал сообщать о лунотрясениях. Они происходили непрерывно, в виде целой серии последовательных толчков. Однако вскоре стало ясно, что это не было результатом неспокойствия лунных недр - поверхность нашего спутника сотрясали шаги двух астронавтов, удалявшихся от сейсмометра к своему космическому кораблю. Прибор был настолько чувствительным, что мог зафиксировать падение на лунную поверхность камня размером с горошину на расстоянии в 1 км от места расположения сейсмометра.
Впоследствии этот сейсмометр сообщил о многочисленных сотрясениях внутри Луны, развеяв тем самым представление о том, что геологическая активность на спутнике давно прекратилась. Оказалось, что сейсмические сотрясения происходят на Луне регулярно, однако они сильно отличаются от землетрясений на нашей планете. Впоследствии на лунной поверхности были оставлены еще четыре сейсмометра. Многолетние наблюдения с их помощью позволили зарегистрировать тысячи лунотрясений, большинство из которых многократно повторялись в одних и тех же очагах. За год на Луне происходит от 600 до 3 000 сейсмических событий. Было выявлено четыре вида лунотрясений - приливные , тектонические , метеоритные и термальные . Приливные сотрясения Луны случаются дважды в месяц, каждые две недели, когда Луна оказывается на одной прямой с Землей и Солнцем, то есть во время полнолуний и новолуний. В эти периоды усиливается действие на Луну приливных сил 3емли и Солнца. При расположении этих трех небесных тел на одной линии силы их взаимного влияния друг на друга суммируются, что приводит к возникновению на Луне лунотрясений на глубине 800-1000 км.
Тектонические лунотрясения происходят при подвижках в неглубоких слоях Луны (100-З00 км). Они случаются реже, чем приливные, и сила их намного слабее.
Источник метеоритных лунотрясений - взрывы, возникающие во время падений на поверхность Луны метеоритов. Большинство лунотрясений этого типа происходит, когда орбиту Луны пересекает какой-либо из метеорных потоков. Но могут быть и падения одиночных метеоритов.
Термальные лунотрясения, самые слабые из всех, начинаются с восходом Солнца, когда после продолжительной ночи, длящейся на Луне около 14 земных суток, холодная поверхность начинает резко нагреваться. При этом происходят подвижки грунта на крутых склонах, оползни, осыпи и другие смещения верхнего слоя, приводящие к небольшим содроганиям поверхности Луны.
Наблюдения, проводившиеся с 1969 по 1978 год, показали, что Луна очень «звучащая» - она продолжает вибрировать после лунотрясений целый час, а иногда и дольше. Такие сотрясения резко отличаются от земных, где колебания поверхности длятся лишь несколько минут. Отсутствие на Луне воды - главная причина длительности колебаний. Наличие в горных породах воды служит на 3емле сильным амортизатором, гасящим вибрацию.
Колебания Луны при сейсмических событиях - слабые и длительные - напоминают тихий протяжный вой, в отличие от сильных, но недолгих колебаний Земли, похожих на громкий резкий вскрик.

Несимметричная Луна
В результате проведенных исследований выяснилось, что наш естественный спутник оказался геологически асимметричным - почти все зарегистрированные сейсмометрами за 8 лет наблюдений лунотрясения произошли на видимой стороне Луны. На обратной же известно всего пять эпицентров лунотрясений, тогда как на видимой стороне их несколько десятков. Подобная же асимметрия наблюдается и в распределении по поверхности Луны основных типов рельефа - морей и материков. Практически все темные участки - лунные моря, находятся только на видимой стороне. Это равнины, сложенные темным материалом - базальтовыми лавами, подобными тем, что встречаются у нас на Среднесибирском плоскогорье. Светлые же участки, называющиеся лунным материком, занимают 2/3 видимой стороны Луны, а моря вкраплены в него отдельными небольшими по площади участками. Лунный материк более древний, чем моря, он сформировался 4,5 млрд. лет назад, а 3 млрд. лет назад наиболее низкие его участки были затоплены базальтами, излившимися из недр Луны. Вулканическая и сейсмическая активность Луны достигала своего пика 3 млрд. лет назад, когда происходили обширные лавовые излияния, создавшие темные базальтовые равнины лунных морей.
Энергия, выделяющаяся за год при лунотрясениях, в несколько миллиардов раз меньше той, которой обладают землетрясения. Большая часть этой энергии выделяется на глубинах 600-800 км, то есть у подошвы твердой оболочки Луны - литосферы. Глубже этого слоя вещество находится в частично расплавленном состоянии (астеносфера), а в самом центре Луны может иметься полностью расплавленное небольшое ядро из сернистого железа.
Основными причинами сейсмической активности Луны являются приливное воздействие 3емли и падения крупных метеоритов. Метеоритные лунотрясения могут приводить к обрушениям склонов лунных кратеров до тех пор, пока те не станут достаточно пологими, чтобы на них не образовывались оползни.
На Луне очень малы потери энергии упругих волн, поэтому сатрясения ощущаются на очень больших удалениях от эпицентра сейсмического события. При этом на Луне амплитуда колебаний намного меньше, чем на Земле. Человек, стоящий на поверхности Луны, даже и не ощутит, что грунт под ним колеблется. А вот вторичные эффекты лунной сейсмической активности могут служить источником опасности для находящихся на Луне людей или приборов. Слабое затухание сейсмических волн может приводить к тому, что на обширных площадях и на больших удалениях от эпицентра возникнут обрушения склонов кратеров или оползни в горных местностях. Астронавты «Аполлона-17» - последней экспедиции на Луну, состоявшейся в 1972 году, - исследовали оползень, образование которого связывают с метеоритным ударом, создавшим 100 млн. лет назад кратер Тихо, расположенный в 2 000 км от места работы экспедиции. Однако вероятность крупных сейсмических событий очень мала. Такие лунотрясения случаются лишь при падениях крупных метеоритов, что происходит чрезвычайно редко.

Фонарь для каменных глубин
Изучением землетрясений и причин, их порождающих, занимается сейсмология - наука, название которой происходит от греческого слова «сейсмос», что значит «колебания». Один из основоположников сейсмологии, русский физик академик Голицын, еще в 1912 году образно заметил, что «всякое землетрясение можно уподобить фонарю, который зажигается на короткое время и освещает нам внутренности Земли, позволяя тем самым рассмотреть то, что там происходит». Действительно, почти все современные представления о внутреннем строении нашей планеты основаны на интерпретации

сейсмограмм - записей сейсмических волн. Слагающие Землю горные породы обладают определенной эластичностью, но в местах тектонических разломов постепенно накапливаются напряжения, вызываемые действием сил сжатия или растяжения. Когда эти напряжения превышают предел прочности самих пород, происходит резкое смещение слоев в вертикальном или горизонтальном направлении. Обычно оно составляет лишь несколько сантиметров, но при этом выделяется огромная энергия - ведь в движение приходят массы в миллиарды тонн! Мгновенное перемещение масс по разрывам в глубине Земли приводит к возникновению сейсмических волн, вызывающих вибрацию горных пород и образование в них разломов. От очага землетрясения (гипоцентра) сейсмические волны расходятся во все стороны и вызывают сильные колебания поверхности вблизи эпицентра - точки на поверхности планеты, расположенной прямо над очагом. По мере удаления от эпицентра эти колебания затухают. Однако сейсмические волны могут достигать даже противоположной стороны планеты, пройдя через глубинные оболочки-мантию и ядро. Причем через жидкий, расплавленный материал ядра проходят только волны, называемые продольными, они вызывают сжатие и растяжение среды, через которую проходят. Их движение напоминает перемещение червяка, сжимающегося и растягивающегося вдоль продольной оси. Волны другого вида - поперечные-через расплав не проходят, а затухают на границе земного ядра. В этих волнах происходит колебание частиц горных пород перпендикулярно направлениям распространения волн. Такие колебания можно сравнить с движением змеи, извивающейся по поверхности поперек направления движения.

Ракетные удары по Луне
Сами астронавты, чтобы вызвать «просвечивание» лунных недр, умышленно создавали лунотрясения различными способами. Например, астронавты «Аполлона-12» после возвращения на орбитальный корабль сбросили свой лунный отсек с орбиты на поверхность Луны. Астронавты «Аполлона-14» Шепард и Митчелл провели сейсмический эксперимент, в ходе которого взорвали 13 небольших зарядов, расположенных на лунной поверхности. Взрывы таких зарядов, установленных на конце шеста, которым астронавт упирался в лунный грунт, создавали маленькие лунотрясения. Сейсмические волны от них фиксировались установленным неподалеку прибором. Таким образом были получены сведения о строении лунных недр на глубине в несколько десятков метров. Покидая Луну, несколько экспедиций оставили на ее поверхности гранатометы, которые впоследствии приводились в действие по командам с Земли. Взрывы этих гранат позволили получить представление о строении верхних слоев лунной коры на более значительной глубине, чем взрывы, произведенные самими астронавтами с помощью ручных устройств.
Падения на Луну четырех лунных модулей кораблей «Аполлон» и пяти последних ступеней лунной ракеты-носителя «Сатурн-V» показали, что мощная материковая кора охватывает всю Луну, не разделяясь, как на Земле, на отдельные континенты, и лишь в некоторых местах она утончается и перекрывается базальтовыми покровами. Под корой до глубины 800 км лежит мантия, в которой, начиная с глубины примерно 100 км, появляются признаки слабой современной активности, проявляющиеся лунотрясениями. Глубже 800 км, по-видимому, появляется существенное количества расплава, который не пропускает поперечные сейсмические волны. Эпицентры лунотрясений складываются в два широких размытых пояса, не совпадающих с поясами темных морей.

Теории происхождения Луны
За последние 120 лет были выдвинуты три гипотезы происхождения нашего спутника. Первую предложил в 1879 г. английский астроном и математик Джордж Дарвин, сын известного естествоиспытателя Чарльза Дарвина. Согласно этой гипотезе, Луна отделилась когда-то от Земли, пребывавшей в то время в жидком состоянии (такие представления о прошлом Земли господствовали в конце XIX в.). Изучение эволюции лунной орбиты действительно указывало на то, что некогда Луна была гораздо ближе к Земле, чем теперь.
Изменение взглядов на прошлое Земли и критика гипотезы Дарвина российским геофизиком Владимиром Николаевичем Лодочниковым заставили ученых начиная с 1939 г. искать другие пути образования Луны. В 1962 г. американский геофизик Гарольд Юри предположил, что Земля захватила уже готовую, сформировавшуюся Луну. Однако помимо весьма малой малой вероятности такого события против гипотезы Юри говорило сходство состава Луны и земной мантии.
В 60-е гг. российская исследовательница Евгения Леонидовна Рускол, развивая идеи своего учителя, математика Отто Юльевича Шмидта, построила теорию совместного образования Земли и Луны как двойной планеты из облака допланетных тел, окружавшего когда-то Солнце. Эту теорию поддержали многие западные ученые. По мнению австралийского геофизика Эдварда Рингвуда, много занимавшегося проблемой происхождения Луны, из всех гипотез, созданных до запуска космических аппаратов серии "Аполлон", только модель Рускол не имеет серьезных недостатков. Разработка ее продолжается...

Похожие статьи

© 2024 dvezhizni.ru. Медицинский портал.